Второй лямбда зонд
Показания второй лямбды
Администратор
23874
Очень часто все задаются вопросом: "Что должен показывать второй лямбда зонд?", "Зачем нужен второй лямбда зонд?" и пр. А все, на самом деле, очень просто.
Второй лямбда зонд появился в результате очередного (в лохматых годах) ужесточения экологических норм, чтобы оценивать эффективность каталитического нейтрализатора (по нашему, катализатора или каталика). Он вообще не влияет на работу мотора и призван лишь отслеживать состояние каталика. Ранее вместо него был датчик температуры катализатора, который определял его забитость благодаря тому, что забитый каталик начинал сильно нагреваться проходящими выхлопными газами, в ответ на что мозг кидал ошибку по нему. Забивается вплоть до наступления перегрева каталик намного позже, чем начинает терять эффективность, поэтому отслеживать его состояние через лямбду намного эффективнее.
Сигнал второй лямбды должен быть в несколько раз ниже по значению напряжения, чем первой. Точные значения диапазонов показаний, которые ЭБУ автомобиля считает нормальными смотрите в руководстве по каждому конкретному автомобилю, но основная суть в том, что когда показания второй лямбды начинают приближаться к показаниям первой лямбды (в районе 0,500 В) или доходить до некоторого (прописанного в мозгах автомобиля) порогового значения, блок управления двигателем выкидывает ошибку по низкой эффективности каталитического нейтрализатора.
Что это означает для нас - рядовых обывателей? Значит, что каталик ваш здох и больше вам не нужен. Свою работу он уже не выполняет, а со временем будет забиваться и ухудшать прохождение выхлопа, оплавляться или рассыпется и будет громыхать в трубе - бывает по разному. Нам нужно будет либо удалить его, заменив пламегасителем (хотя можно просто трубой, но тогда под ногами будет слышен рокот), либо забить до обострения симптомов, но, в любом случае, для погашения ошибки по лямбде, нужно будет либо поставить механическую обманку в виде проставки под лямбду, которая отодвинет ее чуток от выхлопной трубы и она будет меньше захватывать выхлоп, что уменьшит ее показания, либо сделать электронную обманку из 120 Ом-ного резистора и конденсатора на 1 - 2.2 мкф.
Собственно в этом и вся суть - ничего особенного. Ниже фото обманок.
Электронная обманка
Механическая обманка
www.beworks.ru
Разбираемся с катализаторами — Jeep Wrangler, 3.8 л., 2008 года на DRIVE2
Чето скучно, видимо мне.
Эк меня поперло с бездарными постами :)
Теперь будем разбираться с катализаторами, лямбда-зондами (или, для краткости, лямбдами) и прочими скучными вещами.
У меня возникла мысль о создании такой темы довольно давно, еще после того, как меня на сервисе успешно развели на замену лямбд и пытались развести на замену катализаторов.
Если первое я еще проглотил, то второе меня сподвигло уже на изучение вопроса т.к. молча оплачивать такие счета было тяжело.
В результате пришлось разбираться со всей этой скучной мутатней, зато я избежал больших трат.
На жипе выпуск расположен с обоих сторон блока, с каждой из которых стоит свой катализатор и, на каждом из них, висит по 2 лямбды.
Т.е. всего на машине2 одинаковых катализатора и 4 лямбды трех видов.
Каждая лямбда стоит от 2.500р.
Каждый катализатор стоит от 35.000р
В случае замены, такое количество недешевых деталей не радует кошелек, поэтому имеет смысл понимать как они работают и как выглядят их неисправности, чтобы не кормить нечистоплотные автосервисы, предлагающие замену этих деталей тогда, когда этого делать совершенно не нужно.
Чуть теории
Если кто в этом во всем разбирается, то эту часть можно спокойно пропустить и листать до графиков.
Катализатор — это устройство, которое придумано и используется с одной единственной целью — уменьшить количество недогоревшего топлива, выбрасываемого в атмосферу.
Т.е. чистый происк зеленого движения, к функционированию автомобиля отношения не имеющий.
Даже больше — катализатор мешает мотору нормально дышать т.к. повышает сопротивление выпуска.
Бытует аналогичное мнение и про лямбды, как об абсолютно ненужных устройствах, но это не совсем так.
Одна из них, первая, установлена для того, чтобы обеспечивать максимально качественное смесеобразование в двигателе.
А вот вторая уже не нужна — она служит только для того, чтобы контролировать состояние катализатора.
Что такое катализатор?
Это устройство, которое сконструировано так, что задерживает пары топлива и, за счет специальных катализаторов окисления, дожигает несгоревшее топливо, обеспечивая его отсутствие в выхлопе автомобиля.
Материалы, которые используются в катализаторах, недешевы, поэтому катализаторы такие дорогие.
Из этого, кстати, следует такой вывод: дешевых катализаторов не бывает.
Если вы нашли где-то деталь, которая позиционируется как катализатор и при этом стоит в несколько рз дешевле оригинала, то, вероятнее всего, вас обманывают, подсовывая пустую трубу, которая назначение катализатора выполнять не будет.
В процессе своей жизни и выполнения своего назначения, материалы которые используются в катализаторе постепенно расходуются.
Т.е. неизбежно, рано или поздно, он перестанет функционировать.
Обычно срок жизни катализатора на бензиновом двигателе составляет от 100.000 до 200.000 километров пробега.
Некачественное топливо и разбалансированная система смесеобразования, которые способствуют скорейшему расходованию активных компонентов катализатора, приводят к значительному сокращению срока его жизни.
Т.е. убить катализатор равновероятно можно как некачественным бензином, так и настройками системы, которые регулярно переобогащают смесь.
Если есть желание продлить жизнь катализатора, то имеет смысл следить за настройками системы смесеобразования.
Если на качество заливаемого топлива повлиять практически невозможно, то содержать машину в исправном состоянии не так уж и сложно.
Что такое лямбда-зонд?
Это специальный датчик, который меняет свои характеристики в зависимости от того, какое количество кислорода, способного вступать в реакции окисления, находится в зоне его чувствительного элемента.
Т.е. это датчик, который измеряет количество кислорода, поэтому его так и называют: кислородный датчик.
Существует несколько различных конструкций таких датчиков, которые различаются рабочим напряжением, реакцией на изменение кислорода и конструктивными особенностями но, в общем, их конструкции одинаковы.
В особенности конструкций и различий вникать смысла особого нет.
С точки зрения рассматриваемой темы нужно запомнить всего одну простую вещь: этот датчик меряет количество кислорода и, если его больше, то его показания выше, если же в воздухе больше топлива, то его показания ниже.
Используемый в жипе датчик имеет рабочий диапазон измерений от 0.2 до 0.9 вольт.
Чем выше вольтаж, чем больше в воздухе кислорода и меньше топлива и наоборот.
Зачем нужна первая лямбда?
Задача любого двигателя внутреннего сгорания — перевести энергию сгорания топлива в механическую энергию.
Эффективность двигателя определяется тем, что количество бензина, который поступает в камеры сгорания ровно такое, какое даст максимальный эффект.
Т.е. его должно поступать ровно столько, сколько может сгореть.
Если его будет меньше, то выделится меньше энергии, если топлива будет больше, то оно не сгорит и впустую вылетит в выхлопную трубу.
Датчик кислорода используется мозгами автомобиля для контроля смесеобразования.
Они анализируют соотношение кислорода и топлива в газах выходящих из цилиндров.
Понятно, что если двигатель будет работать абсолютно идеально, то в выхлопных газах будет ровно ноль как кислорода так и топлива.
Т.е. сгорело абсолютно точно то количество топлива, которое могло сгореть, не больше и не меньше.
На практике, добиться такой эффективности невозможно, поэтому мозги постоянно контролируют состав смеси.
Контроль осуществляется иттерационно.
Подается какой-то объем топлива и воздуха, эта смесь сгорает, на основании результатов измерения лямбдой мозги видят в какую сторону надо скорректировать смесь, чтобы сгорание топлива было максимально эффективно.
Такая коррекция осуществляется непрерывно, каждый цикл впрыска топлива.
Зачем нужна вторая лямбда?
Этот датчик анализирует количество кислорода после катализатора.
Из описания назначения катализатора понятно, что идеальная ситуация такая, когда все несгоревшее топливо будет полностью сожжено в катализаторе.
Т.е. вторая лямбда должна показывать полное отсутствие топлива после катализатора, т.е. выдавать высокие значения напряжения (топлива нет, а кислород есть).
По мере износа катализатора его эффективность падает.
В результате критического износа он может разрушаться различными способами.
В нем может оказаться дыра или он, наоборот, может сплавиться внутри.
Последствие таких разрушений могут быть довольно печальными для двигателя.
Мозги автомобиля контролируют взаимное изменение лямбд до и после катализатора для того, чтобы своевременно увидеть критическое падение эффективности катализатора и, в случае обнаружения такой ситуации, будет зафиксирована ошибка и на приборной панели загорится знак неисправности.
Несколько рассуждений про слухи
В интернете бытует множество мнений, слухов и утверждений о том, как должны себя вести катализатор и лямбды, на что они влияют и что с ними можно и нужно делать.
Часть этих мнений абсолютно не соответствуют действительности и следование им может причинить вред как автомобилю, так и карману владельца.
Прокомментирую тут некоторые из них.
Лямбды не нужны, их нужно выкинуть
Это абсолютно неверно.
Как можно понять из описания выше, одна из лямбд служит для правильного образования смеси, а вторая для контроля состояния катализатора.
Если хочется, чтобы мотор работал максимально эффективно и с наибольшей экономичностью, то первая лямбда должна быть исправна и нормально функционировать.
Удалять вторую лямбду можно, но строго вместе с удалением катализатора, иначе мозги двигателя не смогут контролировать его состояние и это может привести к его разрушению и фатальным последствиям для двигателя.
Катализаторы необходимо выбивать как можно быстрее
Мнение обосновано только на автомобилях, где не установлена вторая лямбда.
На таких машинах ничто не контролирует состояние катализатора и его кончину предсказать невозможно, поэтому она может наступить внезапно и даже чем-то навредить.
В случае если на автомобиле используется только одна лямбда, то катализатор можно безболезненно и просто ампутировать в любое время.
Если же на автомобиле установлены две лямбды, то ампутировать катализатор легко не получится.
При его удалении мозги тут же увидят его отсутствие а высветят ошибку на приборной панели.
Совместно с удалением катализатора, в обязательно порядке, необходимо либо произвести перепрограммирование (чип-тюнинг) автомобиля с исключением контроля состояния катализатора, либо устанавливать специальную электронную обманку, которая будет для мозгов делать вид, как будто катализатор жив и никуда не делся.
И то и другое действие требует денег, часто немалых, поэтому предпринимать их до тех пор пока катализатор не выйдет из строя абсолютно бессмысленно.
Катализатор нереально душит двигатель
Это мнение ошибочное — в исправном состоянии он оказывает незначительное отрицательное влияние на работу двигателя.
Значительно влиять на работу двигателя он начинает когда его ресурс подходит к концу.
За редкими исключениями в первую очередь снижается его пропускная способность и двигатель начинает задыхаться: теряется мощность, растет потребление топлива.
Если на автомобиле есть контроль за его состоянием и нет ошибок по его эффективности, то катализатор исправен.
В случае приближения его кончины, об этом сообщит лампа на приборной панели.
До этого момента мешать ему работать смысла нет.
Установка лямбд от ВАЗа — это ужасающий колхоз, надо ставить только оригинал!
Это мнение абсолютно неверное.
Принцип действия всех датчиков одинаковый, отличия только в особенностях реализации.
Если его конструктив, особенности работы и конструктив одинаковые, то независимо от того для какой марки автомобиля он предназначен исходя из надписи на коробке — он будет замечательно работать на любой машине с такой же схемой подключения.
Практика
Как обычно, я использую TorquePro для отображения и простейший Bluetooth ODBII передатчик для получения данных от датчиков автомобиля.
В интернете, как обычно, множество противоречивых данных о том как должны выглядеть "правильные" и "неправильные" данные лямбд и как их нужно интерпретировать.
Ситуацию осложняют конструктивные особенности лямбд.
Некоторые работают с инверсией, некоторые в другом диапазоне, в результате сориентироваться с непривычки сложно.
Приведу несколько графиков с комментариями, чтобы было понятнее.
Чуть подготовки.
На страничку вытаскиваем два датчика кислорода для одного банка (одной стороны), например для первого.
Называются они O1x1 и О1х2, т.е. первая (до катализатора) и вторая (после) соответственно в виде графиков в удобном размере.
Так же, обязательно, необходимо вывести показания температуры катализатора т.к. мозги начинают использовать данные от лямбд для коррекции смеси только после его прогрева.
Назыв
www.drive2.ru
Лямбда зонд. Что это такое и как он работает? — DRIVE2

В данной статье разберемся что такое лямбда зонд, для чего нужен и принцип его работы.
Жесткие экологические нормы узаконили применение на автомобилях каталитических нейтрализаторов – устройств, способствующих снижению содержания вредных веществ в выхлопных газах. Катализатор вещь хорошая, но эффективно работает лишь при определенных условиях. Без постоянного контроля состава топливно-воздушной смеси обеспечить катализаторам «долголетие» невозможно – тут приходит на помощь датчик кислорода, он же лямбда зонд.
Что такое лямбда зонд?
Название датчика лямбда зонд происходит от греческой буквы лямбда, которая в автомобилестроении обозначает коэффициент избытка воздуха в топливно-воздушной смеси. По сути, лямбда зонд — это датчик для измерения состава выхлопных газов, чтобы поддерживать оптимальный состав топлива и воздуха.
При оптимальном составе этой смеси, когда на 14,7 части воздуха приходится одна часть топлива — лямбда равна 1. Обеспечить такую точность возможно только с помощью систем питания с электронным впрыском топлива и при использовании в цепи обратной связи лямбда-зонда.
Избыток воздуха в смеси измеряется весьма оригинальным способом – путем определения в выхлопных газах содержания остаточного кислорода (О2). Поэтому лямбда зонд и стоит в выпускном коллекторе перед катализатором. Электрический сигнал датчика считывается электронным блоком управления системы впрыска топлива (ЭБУ), а тот в свою очередь оптимизирует состав смеси путем изменения количества подаваемого в цилиндры топлива.
На некоторых моделях автомобилей имеется еще один лямбда-зонд. Расположен он на выходе катализатора. Этим достигается большая точность приготовления смеси и контролируется эффективность работы катализатора.
Принцип работы лямбда-зонда

Схема лямбда зонда на основе диоксида циркония, расположенного в выхлопной трубе.
1 – твердый электролит ZrO2; 2, 3 – наружный и внутренний электроды; 4 – контакт заземления; 5 – «сигнальный контакт»; 6 – выхлопная труба.
Эффективное измерение остаточного кислорода в отработавших газах лямбда-зонд обеспечивает после разогрева до температуры 300 – 400°С. Только в таких условиях циркониевый электролит приобретает проводимость, а разница в количестве атмосферного кислорода и кислорода в выхлопной трубе ведет к появлению на электродах лямбда-зонда выходного напряжения.
При пуске и прогреве холодного двигателя управление впрыском топлива осуществляется без участия этого датчика, а коррекция состава топливо-воздушной смеси осуществляется по сигналам других датчиков (положения дроссельной заслонки, температуры охлаждающей жидкости, числа оборотов коленвала).
Особенностью циркониевого лямбда-зонда является то, что при малых отклонениях состава смеси от идеального напряжение на его выходе изменяется скачком в интервале 0,1 — 0,9 В.


Зависимость напряжения лямбда-зонда от коэффициента избытка воздуха при температуре датчика 500-800°С
Для повышения чувствительности лямбда-зондов при пониженных температурах и после запуска холодного двигателя используют принудительный подогрев. Нагревательный элемент расположен внутри керамического тела датчика и подключается к электросети автомобиля.
Если лямбда зонд не работает

В этом случае ЭБУ начинает работать по усредненным параметрам, записанным в его памяти: при этом состав образующейся топливно-воздушной смеси будет отличаться от идеального. В результате появится повышенный расход топлива, неустойчивая работа двигателя на холостом ходу, увеличение содержания СО в выхлопе, снижение мощности, но машина при этом остается на ходу.
Перечень неисправностей лямбда зонда достаточно большой и некоторые из них самодиагностикой автомобиля не фиксируются. Поэтому окончательное решение о замене датчика можно принять только после его тщательной проверки, которую лучше всего поручить специалистам. Следует особо отметить, что попытки замены неисправного лямбда-зонда имитатором ни к чему не приведут – ЭБУ не распознает «чужие» сигналы, и не использует их для коррекции состава приготавливаемой горючей смеси, т.е. попросту «игнорирует».
Лямбда зонд – наиболее уязвимый датчик автомобиля с системой впрыска. Его ресурс составляет 40 – 80 000 км в зависимости от условий эксплуатации и исправности двигателя. Особенно чувствителен к качеству топлива – после нескольких таких заправок лямбда зон "умирает" и больше не работает
www.drive2.ru
Про лямбда зонд — DRIVE2

Датчик концентрации кислорода
Датчик кислорода предназначен для определения концентрации кислорода в отработавших газах, состав которых зависит от соотношения топлива и воздуха в смеси, подаваемой в цилиндры двигателя. Информация, которую выдает датчик в виде напряжения (или изменения сопротивления), используется электронным блоком управления впрыском (или карбюратором) для корректировки количества подаваемого топлива.
Для полного сгорания 1 кг топлива необходимо 14,7 кг воздуха. Такой состав топливо-воздушной смеси называют стехиометрическим, он обеспечивает наименьшее содержание токсичных веществ в отработавших газах и, соответственно, эффективное их "дожигание" в каталитическом нейтрализаторе.
Для оценки состава топливо-воздушной смеси используют коэффициент избытка воздуха — отношение количества воздуха, поступившего в цилиндры, к количеству воздуха, теоретически необходимого для полного сгорания топлива. В мировой практике этот коэффициент называют лямбда. При стехиометрической смеси лямбда = 1, если лямбда < 1 (недостаток воздуха), смесь называют богатой, при лямбда >1 (избыток воздуха) смесь называют бедной.
Наибольшая экономичность при полностью открытой дроссельной заслонке бензинового двигателя достигается при лямбда=1,1-1,3. Максимальная мощность обеспечивается, когда лямбда =0,85-0,9.
Общие сведения
В справочной литературе датчик может называться по-разному: кислородный датчик, регулятор "лямбда", лямбда-зонд, датчик концентрации кислорода в отработавших газах. Кислородные датчики бывают двух типов: электрохимические и резистивные. Первый тип датчиков работает по принципу элемента, вырабатывающего электрический ток. Второй — работает, как резистор, изменяя свое сопротивление от условий среды, в которой находится.
Наибольшее распространение в настоящее время получили электрохимические датчики кислорода. В них используется свойство диоксида циркония создавать разность электрических потенциалов (напряжение) при разной концентрации кислорода (в отработавших газах и окружающем воздухе).
При нормальной работе системы подачи топлива напряжение, вырабатываемое датчиком кислорода, может изменяться несколько раз в секунду. Это позволяет приготавливать и поддерживать необходимый состав топливной смеси практически на любом режиме работы двигателя.
Устройство датчика кислорода.
Устройство датчика кислорода:
1- металлический корпус с резьбой.
2 — уплотнительное кольцо.c 3 — токосъемник электрического сигнала.
4 — керамический изолятор.
5 — проводка.
6 — манжета проводов уплотнительная.
7 — токопроводящий контакт цепи подогрева.
8 — наружный защитный экран с отверстием для атмосферного воздуха.
9 — подогрев.
10 — наконечник из керамики.
11 — защитный экран с отверстием для отработавших газов.
Основная часть датчика — керамический наконечник, сделанный на основе диоксида циркония, на внутреннюю и наружную поверхности которого методом напыления наносится платина. Соединение наконечника и корпуса выполнено полностью герметичным во избежание попадания отработавших газов во внутреннюю полость датчика, сообщающуюся с атмосферой. Керамический наконечник находится в потоке отработавших газов, поступающих через отверстия в защитном экране. Эффективная работа датчика возможна при температуре не ниже 300-350'С. Поэтому, для быстрого прогрева после пуска двигателя, современные датчики снабжают электрическим нагревательным элементом, представляющим из себя керамический стержень со спиралью накаливания внутри. Датчики кислорода с различным количеством проводов: провод сигнала, провод "массы" сигнала, провод питания подогрева, провод "массы" подогрева. Датчики без нагревателя могут иметь один, или два сигнальных провода, датчики со встроенным электрическим нагревателем — три или четыре провода. Как правило, провода светлых цветов относятся к нагревателю, а темных — к сигнальному проводу. Все элементы датчика кислорода изготовлены из жаростойких материалов, так как его рабочая температура может достигать 950°С. Выходящие провода имеют термостойкую изоляцию.
Место установки датчика кислорода.
В связи с тем, что датчик кислорода может вырабатывать электрический сигнал только при температуре 300-350°С и выше, датчики без нагревателя устанавливаются в выпускном трубопроводе ближе к двигателю, а с нагревательными элементами — перед нейтрализатором.
В некоторых автомобилях в каталитическом нейтрализаторе установлен датчик температуры, который не следует путать с кислородным. Иногда устанавливается два кислородных датчика — до нейтрализатора и после него.
Маркировка датчиков:
На каждом датчике кислорода, как правило, обозначено: наименование страны-изготовителя; наименование и (или) товарный знак изготовителя; условное обозначение типа.
Ресурс и периодичность контроля работоспособности
Датчики кислорода имеют неразборную конструкцию и не требуют обслуживания. Ресурс электрохимических датчиков кислорода составляет от 60 до 80 тыс. км пробега автомобиля при соблюдении условий эксплуатации, нарушение которых резко сокращает срок службы. Рекомендуется проверять датчики кислорода при каждом техническом обслуживании автомобиля.
Причины преждевременного выхода из строя датчика кислорода
1. Применение этилированного бензина или несоответствующей марки топлива.
2. Использование при установке датчика герметиков, вулканизирующихся при комнатной температуре или содержащих в своем составе силикон.
3. Перегрев датчика из-за неправильно установленного угла опережения зажигания, переобогащения топливо-воздушной смеси, перебоев в зажигании и т. д.
4. Многократные (неудачные) попытки запуска двигателя через небольшие промежутки времени, что приводит к накапливанию несгоревшего топлива в выпускном трубопроводе, которое может воспламениться с образованием ударной волны.
5. Проверка работы цилиндров двигателя с отключением свечей зажигания.
6. Попадание на керамический наконечник датчика любых эксплуатационных жидкостей, растворителей и моющих средств.
7. Обрыв, плохой контакт или замыкание на "массу" выходной цепи датчика.
8. Негерметичность в выпускной системе.
Возможные признаки неисправности датчика кислорода
1. Неустойчивая работа двигателя на малых оборотах.
2. Повышенный расход топлива.
3. Ухудшение динамических характеристик автомобиля.
4. Характерное потрескивание в районе расположения каталитического нейтрализатора после остановки двигателя.
5. Повышение температуры в районе каталитического нейтрализатора или его нагрев до раскаленного состояния.
6. На некоторых автомобилях загорание лампы "СНЕСК ЕNGINЕ" при установившемся режиме движения.
Правила снятия и установки датчика
1. Демонтаж датчика, во избежание повреждений, производят только на холодном двигателе, перед этим отсоединяют провода датчика (при выключенном зажигании).
2. Перед заменой датчика необходимо проверить его маркировку, которая должна соответствовать указанной в инструкции по эксплуатации автомобиля.
3. Производят внешний осмотр, чтобы:
убедиться в отсутствии механических повреждений;
проверить наличие уплотнительного кольца; o проверить наличие на резьбовой части специальной противопригарной смазки.
4. Заворачивают от руки датчик кислорода до упора и затягивают с усилием 3,5-4,5 кгм. Соединение должно быть герметичным.
5. Соединяют электрический разъем (разъемы).
6. Проверяют работоспособность по контролируемым параметрам.
В некоторых случаях датчик крепится к выпускному трубопроводу с помощью специальной пластины. Между пластиной и выпускным трубопроводом должна находиться специальная герметизирующая прокладка.
Основные контролируемые параметры
Проверка параметров датчика кислорода осуществляется при достижении им рабочей температуры (350+50°С) с использованием газоанализатора, осциллографа, цифрового вольтметра и омметра.
Контролируются следующие параметры:
1. при значении Лямбда=0,9 (обогащенная горючая смесь) напряжение на сигнальном проводе должно быть не менее 0,65 В;
2. при значении лямбда=1,1 (обедненная горючая смесь) напряжение на сигнальном выводе должно быть не более 0,25 В;
3. время срабатывания при обедненной горючей смеси — не более 250 мс;
4. время срабатывания при обогащенной горючей смеси — не более 450 мс;
5. сопротивление при температуре 350 + 50 "С не более 10кОм.
Бензиновому двигателю для работы требуется смесь с определенным соотношением воздух-топливо. Соотношение, при котором топливо максимально полно и эффективно сгорает, называется стехиометрическим и составляет оно 14,7:1. Это означает, что на одну часть топлива следует взять 14,7 частей воздуха. На практике же соотношение воздух-топливо меняется в зависимости от режимов работы двигателя и смесеобразования. Двигатель становится неэкономичным. Это и понятно!
Коэффициент избыточности воздуха — L (лямбда) характеризует — насколько реальная топливно-воздушная смесь далека от оптимальной (14,7:1). Если состав смеси — 14,7:1, то L=1 и смесь оптимальна. Если L < 1, значит недостаток воздуха, смесь обогащенная. Мощность двигателя увеличивается при L=0,85 — 0,95. Если L > 1, значит налицо избыток воздуха, смесь бедная. Мощность при L=1,05 — 1,3 падает, но зато экономичность растет. При L > 1,3 смесь перестает воспламеняться и начинаются пропуски в зажигании. Бензиновые двигатели развивают максимальную мощность при недостатке воздуха в 5-15% (L=0,85 — 0,95), тогда как минимальный расход топлива достигается при избытке воздуха в 10-20%% (L=1,1 — 1,2). Таким образом соотношение L при работе двигателя постоянно меняется и диапазон 0,9 — 1,1 является рабочим диапазоном лямбда-регулирования. В то же время, когда двигатель прогрет до рабочей температуры и не развивает большой мощности (например работает на ХХ), необходимо по возможности более строгое соблюдение равенства L=1 для того, чтобы трехкомпонентный катализатор смог полностью выполнить свое предназначение и сократить объем вредных выбросов до минимума.
Датчик кислорода — он же лямбда-зонд — устанавливается в выхлопном коллекторе таким образом, чтобы выхлопные газы обтекали рабочую поверхность датчика. Материал его как правило циркониевый (используется керамический элемент на основе двуокиси циркония, покрытый платиной) — гальванический источник тока, меняющий напряжение в зависимости от температуры и наличия кислорода в окружающей среде. Конструкция его предполагает, что одна часть соединяется с наружним воздухом, а другая — с выхлопными газами внутри трубы. В зависимости от концентрации кислорода в выхлопных газах, на выходе датчика появляется сигнал. Уровень этого сигнала, для датчиков систем впрыска конца 80-х — начала 90-х годов, может быть низким (0,1…0,2В) или высоким (0,8…0,9В). Таким образом датчик кислорода — это своеобразный переключатель (триггер), сообщающий контроллеру впрыска о качественной концентрации кислорода в отработавших газах. Фронт сигнала между положениями "Больше" и "меньше" очень мал. Настолько мал, что его можно не рассматривать всерьез. Контроллер принимает сигнал с ЛЗ, сравнивает его с значением, прошитым в его памяти и, если сигнал отличается от оптимального для текущего режима, корректирует длительность впрыска топлива в ту или иную сторону. Таким образом осуществляется обратная связь с контроллером впрыска и точная подстройка режимов работы двигателя под текущую ситуацию с достижением максимальной экономии топлива и минимизацией вредных выбросов.
Лямбда-зонды бывают одно-, двух-, трех- и четырехпроводные. Однопроводные и двухпроводные датчики применялись в самых первых системах впрыска с обратной связью (лямбда-регулированием). Однопроводный датчик имеет только один провод, который является сигнальным. Земля этго датчика выведена на корпус и приходит на массу двигателя через резьбовое соединение. Двухпроводный датчик отличается от однопроводного наличием отдельного земляного провода сигнальной цепи. Недостатки таких зондов: рабочий диапазон температуры датчика начинается от 300 градусов. До достижения этой температуры датчик не работает и не выдает сигнала. Стало быть необходимо устанавливать этот датчик как можно ближе к цилиндрам двигателя, чтобы он подогревался и обтекался наиболее горячим потоком выхлопных газов. Процесс нагрева датчика затягивается и это вносит задержку в момент включения обратной связи в работу контроллера. Кроме того, использование самой трубы в качестве проводника сигнала (земля) требует нанесения на резьбу специальной токопроводящей смазки при установке датчика в выхлопной трубопровод и увеличивает вероя
www.drive2.ru
Зачем нужен лямбда-зонд — DRIVE2
Зачем нужен лямбда-зонд?
Жесткие экологические нормы давно узаконили применение на автомобилях каталитических нейтрализаторов (в обиходе — катализаторы) — устройств, способствующих снижению содержания вредных веществ в выхлопных газах. Катализатор вещь хорошая, но эффективно работает лишь при определенных условиях. Без постоянного контроля состава топливно-воздушной смеси обеспечить катализаторам "долголетие" невозможно — вот тут и приходит на помощь датчик кислорода, он же О2-датчик, он же лямбда-зонд (ЛЗ).
Название датчика происходит от греческой буквы l (лямбда), которая в автомобилестроении обозначает коэффициент избытка воздуха в топливно-воздушной смеси. При оптимальном составе этой смеси, когда на 14,7 части воздуха приходится 1 часть топлива, l равна 1 (график 1). "Окно" эффективной работы катализатора очень узкое: l=1±0,01. Обеспечить такую точность возможно только с помощью систем питания с электронным (дискретным) впрыском топлива и при использовании в цепи обратной связи лямбда-зонда.



Избыток воздуха в смеси измеряется весьма оригинальным способом — путем определения в выхлопных газах содержания остаточного кислорода (О2). Поэтому лямбда-зонд и стоит в выпускном коллекторе перед катализатором. Электрический сигнал датчика считывается электронным блоком управления системы впрыска топлива (ЭБУ), а тот в свою очередь оптимизирует состав смеси путем изменения количества подаваемого в цилиндры топлива. На некоторых современных моделях автомобилей имеется еще один лямбда-зонд. Расположен он на выходе катализатора. Этим достигается большая точность приготовления смеси и контролируется эффективность работы катализатора (рис. 1).

График 1. Зависимость мощности двигателя (P) и расхода топлива (Q) от коэффициента избытка воздуха (l)
Полное сгорание и максимальная мощность достигается при l=1.
Рис. 1. Схема l-коррекции с одним и двумя датчиками кислорода двигателя
1 — впускной коллектор; 2 — двигатель; 3 — блок управления двигателем; 4 — топливная форсунка; 5 — основной лямбда-зонд; 6 — дополнительный лямбда-зонд; 7 — каталитический нейтрализатор.
Принцип работы
Лямбда-зонд действует по принципу гальванического элемента с твердым электролитом в виде керамики из диоксида циркония (ZrO2). Керамика легирована оксидом иттрия, а поверх нее напылены токопроводящие пористые электроды из платины. Один из электродов "дышит" выхлопными газами, а второй — воздухом из атмосферы (рис.2). Эффективное измерение остаточного кислорода в отработавших газах лямбда-зонд обеспечивает после разогрева до температуры 300 — 400оС. Только в таких условиях циркониевый электролит приобретает проводимость, а разница в количестве атмосферного кислорода и кислорода в выхлопной трубе ведет к появлению на электродах лямбда-зонда выходного напряжения.
При пуске и прогреве холодного двигателя управление впрыском топлива осуществляется без участия этого датчика, а коррекция состава топливо-воздушной смеси осуществляется по сигналам других датчиков (положения дроссельной заслонки, температуры охлаждающей жидкости, числа оборотов коленвала и др.). Особенностью циркониевого лямбда-зонда является то, что при малых отклонениях состава смеси от идеального (0,97 Ј l Ј 1,03) напряжение на его выходе изменяется скачком в интервале 0,1 — 0,9 В (график 2).
Кроме циркониевых, существуют кислородные датчики на основе двуокиси титана (TiO2). При изменении содержания кислорода (О2) в отработавших газах они изменяют свое объемное сопротивление. Генерировать ЭДС титановые датчики не могут; они конструктивно сложны и дороже циркониевых, поэтому, несмотря на применение в некоторых автомобилях (Nissan, BMW, Jaguar), широкого распространения не получили.
Для повышения чувствительности лямбда-зондов при пониженных температурах и после запуска холодного двигателя используют принудительный подогрев. Нагревательный элемент (НЭ) расположен внутри керамического тела датчика и подключается к электросети автомобиля (рис. 3).

График 2. Зависимость напряжений лямбда-зонда от коэффициента избытка воздуха (l) при температуре датчика 500-800оС
А — условная точка средних показаний (Uвых " 0,5 В, при l=1,0). (Обогащение смеси (уменьшение О2 в выхлопе). Обеднение смеси (увеличение О2 в выхлопе).
Если ЛЗ "врет"
В этом случае ЭБУ начинает работать по усредненным параметрам, записанным в его памяти: при этом состав образующейся топливно-воздушной смеси будет отличаться от идеального. В результате появится повышенный расход топлива, неустойчивая работа двигателя на холостом ходу, увеличение содержания СО в отработавших газах, снижение динамических характеристик, но машина при этом остается на ходу. В некоторых моделях автомобилей ЭБУ реагирует на отказ лямбда-зонда очень серьезно и начинает так рьяно увеличивать количество подаваемого в цилиндры топлива, что запас горючего в баке "тает" на глазах, из трубы валит черный дым, СО "зашкаливает", а двигатель "тупеет" и на ближайшую СТО вам, скорее всего, придется добираться на буксире.
Перечень возможных неисправностей лямбда-зонда достаточно большой и некоторые из них (потеря чувствительности, уменьшение быстродействия) самодиагностикой автомобиля не фиксируются. Поэтому окончательное решение о замене датчика можно принять только после его тщательной проверки, которую лучше всего поручить специалистам. Следует особо отметить, что попытки замены неисправного лямбда-зонда имитатором ни к чему не приведут — ЭБУ не распознает "чужие" сигналы, и не использует их для коррекции состава приготавливаемой горючей смеси, т.е. попросту "игнорирует".
При сгоревшем или отключенном лямбда-зонде содержание СО в выхлопе возрастает на порядок: от 0,1 — 0,3% до 3 — 7% и уменьшить его значение не всегда удается, т. к. запаса хода винта качества смеси может не хватить. В автомобилях, система l-коррекции которых имеет два кислородных датчика, дело обстоит еще сложнее. В случае отказа второго лямбда-зонда (или "пробивки" секции катализатора) добиться нормальной работы двигателя практически невозможно.
Вообще лямбда-зонд — наиболее уязвимый датчик автомобиля с системой впрыска. Его ресурс составляет 40 — 80 тыс. км в зависимости от условий эксплуатации и исправности двигателя. Плохое состояние маслосъемных колец, попадание антифриза в цилиндры и выпускные трубопроводы, обогащенная топливно-воздушная смесь, сбои в системе зажигания сильно сокращают срок его службы. Применение этилированного бензина категорически недопустимо — свинец "отравляет" платиновые электроды лямбда-зонда за несколько бесконтрольных заправок.

Рис. 2. Схема датчика кислорода на основе диоксида циркония, расположенного в выхлопной трубе
1 — твердый электролит ZrO2; 2, 3 — наружный и внутренний электроды; 4 — контакт заземления; 5 — "сигнальный контакт"; 6 — выхлопная труба.

Рис. 4. Контактные выводы наиболее распространенных циркониевых лямбда-зондов
а — без подогревателя; б, с — с подогревателем.
* цвет вывода может отличаться от указанного.
Махнем не глядя!
Рекомендованный заводом-изготовителем лямбда-зонд и сходные по конструкции циркониевые датчики взаимозаменяемы. Возможна замена неподогреваемых датчиков на подогреваемые (но не наоборот!). Однако при этом может возникнуть проблема несовместимости разъемов и отсутствия в машине цепи питания для нагревателя лямбда-зонда. Недостающие провода можно проложить самостоятельно, а вместо разъема использовать стандартные автомобильные контакты.
Цветовая маркировка выводов лямбда-зондов может различаться, но сигнальный провод всегда будет иметь темный цвет (обычно — черный). "Массовый" провод может быть белым, серым или желтым (рис. 4). Титановые лямбда-зонды от циркониевых легко отличить по цвету "накального" вывода подогревателя — он всегда красный. При замене 3-контактного лямбда-зонда на 4-контактный необходимо надежно соединить с "массой" автомобиля провод заземления подогревателя и сигнальный "минус", а накальный провод подогревателя через реле и предохранитель подключить к "плюсу" аккумулятора.
Подключение напрямую к катушке зажигания нежелательно, т. к. в цепи ее питания может стоять понижающее сопротивление. Подключиться к контактам топливного насоса достаточно сложно. Лучше всего подключить реле подогревателя лямбда-зонда к замку зажигания.
www.drive2.ru
Замена лямбда зонда, первый и второй лямбды датчики
Главная » Электрика » Замена лямбда зонда, первый и второй лямбды датчикипросмотров 878
Первый из пары датчиков лямбда зондов, называемая регулирующей, помещается в выхлопную систему между двигателем и катализатором, а вторая лямбда, так называемая диагностика, должны быть размещены сразу же после выхода катализатора. Неисправности этих датчиков сигнализируют первоначально контрольной лампой (MIL) (check engine) на приборной панели, и для их точной идентификации позволяет диагностировать главный контроллер, изготовленный с использованием соответствующего тестера. В ходе этого сначала выявляются соответствующие записи в памяти ошибок, а затем их точная интерпретация становится возможной на основе стандартных тестов и измерений реальных параметров.
Критерии для правильной работы лямбда зонда
Условием эффективной оптимизации состава выхлопных газов с помощью катализаторов, установленных в автомобилях, является сжигание в цилиндрах двигателей, так называемых стехиометрических смесей, в которых 14,7 одинаковых единиц воздуха на 1 единицу массы топлива.
Его выполнение очень сложно из-за необходимости постоянной регулировки введенных доз топлива до текущей нагрузки двигателя, его температуры, скорости вращения и т. д. Поэтому, помимо использования датчиков, измеряющих эти количества, возникла необходимость ввести систему постоянного контроля фактического состава выработанных выхлопных газов
Это то, что использует лямбда-зонд, также известный как кислородный датчик, потому что он реагирует непосредственно на изменение содержания кислорода в выхлопных газах. Его увеличение свидетельствует о сжигании слишком плохой топливно-воздушной смеси, уменьшение — при чрезмерном обогащении композиции. Согласно этой информации, полученной зондом, контроллер увеличивает или уменьшает размер введенной дозы топлива.
Видео, что такое лямбда зонд
Дополнительные требования для правильной работы лямбды
Лямбда-датчики работают правильно только после достижения достаточно высокой рабочей температуры. Чем короче время прогрева, тем быстрее они становятся активными в выполнении своих функций. Ранее блок управления двигателем игнорирует свои сигналы, что всегда приводит к увеличению расхода топлива и ухудшению состава выхлопных газов. Зонд должен как можно скорее реагировать на изменения состава испускаемого дымового газа, поскольку любая задержка в реакции означает неблагоприятную задержку в коррекции пропорций топливовоздушной смеси с помощью модуля управления двигателем.
Причины неисправности лямбда зонда
Лямбда-датчики, изготовленные в соответствии со стандартами оригинальных деталей, обычно не портятся в течение всего срока службы транспортного средства без участия внешних причин. К ним относятся: механические воздействия, вызывающие физический ущерб, например, растрескивание керамического сердечника или прерывание кабельных соединений; загрязнение сенсора из-за твердых частиц паров, осаждающихся на него, что заставляет реакцию зонда замедляться до изменений состава выхлопных газов и, следовательно, нарушения электронного модуля управления двигателем; Увлажнение и коррозия электрических соединителей, которые изменяют значения сигналов, излучаемых зондом.
Выбор лямбда зонда
- Неисправные лямбда-зонды не подвергаются никакому ремонту, поэтому в случае неисправностей возникает необходимость их замены.
- Опыт показывает, чтобы выбрать зап-часть проверенного бренда, отвечающего требованиям качества, чем дешевая замена.
- Надлежащая и надежная работа датчика зависит от качества материалов, используемых для его изготовления, хорошо спроектированной конструкции, точной обработки и точной сборки (лазерной сварки) компонентов. Здесь применяются очень строгие требования, так как весь датчик подвергается очень неблагоприятным условиям, существующим внутри выхлопной системы, и, следовательно, к значительным разностям температур, сильным вибрациям, влажности и химически активным веществам.
- Использование более дешевых деталей может обеспечить только очевидную экономию, так как обычно ускоряет период замены. Кроме того, дешевые замены часто предлагаются как «универсальные», то есть без оригинальных разъемов на концах проводов.
- Ручное изготовление повышает риск соединений с плохой проводимостью или даже совершенно неправильными, что может привести к серьезным и дорогостоящим отказам других компонентов электронной системы управления двигателем.
Установка нового датчика лямбда зонда в автомобиль
После установки правильной запасной части убедитесь, что ее связь с контроллером двигателя микропроцессора верна. Для этой цели он тестирует, запускает и настраивает различные циклы вождения, пока контроллер не распознает от 3 до 5 типичных циклов, предопределенных производителем автомобилей. Если это условие не выполняется, индикатор предупреждения MIL отключится после следующего запуска двигателя. После этой первоначальной конфигурации бортовой диагностической системы начинается надлежащее функционирование самого лямбда-зонда. Если процедуры установки не соблюдаются или несовместимый кислородный датчик, проблемы, характерные для поврежденного зонда, снова появятся, так как на самом не будет работать оптимально, что отрицательно скажется на расходе топлива и выбросах.
Замены с качеством оригинальных деталей Лямбда-зонды, разработанные для вторичного рынка, производятся в соответствии со стандартами OE, благодаря которым они идеально подходят к автомобилю. Это проверяется в нескольких тестах во время производственного процесса, так что каждый продукт соответствует 100% требований к спецификации. Кроме того, зонды покрыты специальными покрытиями для предотвращения образования сажи и других загрязнителей. Программа лямбда-зонд для вторичного рынка включает 356 частей с 3558 возможными приложениями.
Проголосуйте, понравилась ли вам статья? Загрузка...remontpeugeot.ru
Про лямбда-зонд. — DRIVE2
Датчик кислорода предназначен для определения концентрации кислорода в отработавших газах, состав которых зависит от соотношения топлива и воздуха в смеси, подаваемой в цилиндры двигателя. Информация, которую выдает датчик в виде напряжения (или изменения сопротивления), используется электронным блоком управления впрыском (или карбюратором) для корректировки количества подаваемого топлива.
Для полного сгорания 1 кг топлива необходимо 14,7 кг воздуха. Такой состав топливо-воздушной смеси называют стехиометрическим, он обеспечивает наименьшее содержание токсичных веществ в отработавших газах и, соответственно, эффективное их "дожигание" в каталитическом нейтрализаторе.
Для оценки состава топливо-воздушной смеси используют коэффициент избытка воздуха — отношение количества воздуха, поступившего в цилиндры, к количеству воздуха, теоретически необходимого для полного сгорания топлива. В мировой практике этот коэффициент называют лямбда. При стехиометрической смеси лямбда = 1, если лямбда < 1 (недостаток воздуха), смесь называют богатой, при лямбда >1 (избыток воздуха) смесь называют бедной.
Наибольшая экономичность при полностью открытой дроссельной заслонке бензинового двигателя достигается при лямбда=1,1-1,3. Максимальная мощность обеспечивается, когда лямбда =0,85-0,9.
Общие сведения
В справочной литературе датчик может называться по-разному: кислородный датчик, регулятор "лямбда", лямбда-зонд, датчик концентрации кислорода в отработавших газах. Кислородные датчики бывают двух типов: электрохимические и резистивные. Первый тип датчиков работает по принципу элемента, вырабатывающего электрический ток. Второй — работает, как резистор, изменяя свое сопротивление от условий среды, в которой находится.
Наибольшее распространение в настоящее время получили электрохимические датчики кислорода. В них используется свойство диоксида циркония создавать разность электрических потенциалов (напряжение) при разной концентрации кислорода (в отработавших газах и окружающем воздухе).
При нормальной работе системы подачи топлива напряжение, вырабатываемое датчиком кислорода, может изменяться несколько раз в секунду. Это позволяет приготавливать и поддерживать необходимый состав топливной смеси практически на любом режиме работы двигателя.
Устройство датчика кислорода.
Устройство датчика кислорода:
1- металлический корпус с резьбой.
2 — уплотнительное кольцо.c 3 — токосъемник электрического сигнала.
4 — керамический изолятор.
5 — проводка.
6 — манжета проводов уплотнительная.
7 — токопроводящий контакт цепи подогрева.
8 — наружный защитный экран с отверстием для атмосферного воздуха.
9 — подогрев.
10 — наконечник из керамики.
11 — защитный экран с отверстием для отработавших газов.
Основная часть датчика — керамический наконечник, сделанный на основе диоксида циркония, на внутреннюю и наружную поверхности которого методом напыления наносится платина. Соединение наконечника и корпуса выполнено полностью герметичным во избежание попадания отработавших газов во внутреннюю полость датчика, сообщающуюся с атмосферой. Керамический наконечник находится в потоке отработавших газов, поступающих через отверстия в защитном экране. Эффективная работа датчика возможна при температуре не ниже 300-350'С. Поэтому, для быстрого прогрева после пуска двигателя, современные датчики снабжают электрическим нагревательным элементом, представляющим из себя керамический стержень со спиралью накаливания внутри. Датчики кислорода с различным количеством проводов: провод сигнала, провод "массы" сигнала, провод питания подогрева, провод "массы" подогрева. Датчики без нагревателя могут иметь один, или два сигнальных провода, датчики со встроенным электрическим нагревателем — три или четыре провода. Как правило, провода светлых цветов относятся к нагревателю, а темных — к сигнальному проводу. Все элементы датчика кислорода изготовлены из жаростойких материалов, так как его рабочая температура может достигать 950°С. Выходящие провода имеют термостойкую изоляцию.
Место установки датчика кислорода.
В связи с тем, что датчик кислорода может вырабатывать электрический сигнал только при температуре 300-350°С и выше, датчики без нагревателя устанавливаются в выпускном трубопроводе ближе к двигателю, а с нагревательными элементами — перед нейтрализатором.
В некоторых автомобилях в каталитическом нейтрализаторе установлен датчик температуры, который не следует путать с кислородным. Иногда устанавливается два кислородных датчика — до нейтрализатора и после него.
Маркировка датчиков:
На каждом датчике кислорода, как правило, обозначено: наименование страны-изготовителя; наименование и (или) товарный знак изготовителя; условное обозначение типа.
Ресурс и периодичность контроля работоспособности
Датчики кислорода имеют неразборную конструкцию и не требуют обслуживания. Ресурс электрохимических датчиков кислорода составляет от 60 до 80 тыс. км пробега автомобиля при соблюдении условий эксплуатации, нарушение которых резко сокращает срок службы. Рекомендуется проверять датчики кислорода при каждом техническом обслуживании автомобиля.
Причины преждевременного выхода из строя датчика кислорода
1. Применение этилированного бензина или несоответствующей марки топлива.
2. Использование при установке датчика герметиков, вулканизирующихся при комнатной температуре или содержащих в своем составе силикон.
3. Перегрев датчика из-за неправильно установленного угла опережения зажигания, переобогащения топливо-воздушной смеси, перебоев в зажигании и т. д.
4. Многократные (неудачные) попытки запуска двигателя через небольшие промежутки времени, что приводит к накапливанию несгоревшего топлива в выпускном трубопроводе, которое может воспламениться с образованием ударной волны.
5. Проверка работы цилиндров двигателя с отключением свечей зажигания.
6. Попадание на керамический наконечник датчика любых эксплуатационных жидкостей, растворителей и моющих средств.
7. Обрыв, плохой контакт или замыкание на "массу" выходной цепи датчика.
8. Негерметичность в выпускной системе.
Возможные признаки неисправности датчика кислорода
1. Неустойчивая работа двигателя на малых оборотах.
2. Повышенный расход топлива.
3. Ухудшение динамических характеристик автомобиля.
4. Характерное потрескивание в районе расположения каталитического нейтрализатора после остановки двигателя.
5. Повышение температуры в районе каталитического нейтрализатора или его нагрев до раскаленного состояния.
6. На некоторых автомобилях загорание лампы "СНЕСК ЕNGINЕ" при установившемся режиме движения.
Правила снятия и установки датчика
1. Демонтаж датчика, во избежание повреждений, производят только на холодном двигателе, перед этим отсоединяют провода датчика (при выключенном зажигании).
2. Перед заменой датчика необходимо проверить его маркировку, которая должна соответствовать указанной в инструкции по эксплуатации автомобиля.
3. Производят внешний осмотр, чтобы:
убедиться в отсутствии механических повреждений;
проверить наличие уплотнительного кольца; o проверить наличие на резьбовой части специальной противопригарной смазки.
4. Заворачивают от руки датчик кислорода до упора и затягивают с усилием 3,5-4,5 кгм. Соединение должно быть герметичным.
5. Соединяют электрический разъем (разъемы).
6. Проверяют работоспособность по контролируемым параметрам.
В некоторых случаях датчик крепится к выпускному трубопроводу с помощью специальной пластины. Между пластиной и выпускным трубопроводом должна находиться специальная герметизирующая прокладка.
Основные контролируемые параметры
Проверка параметров датчика кислорода осуществляется при достижении им рабочей температуры (350+50°С) с использованием газоанализатора, осциллографа, цифрового вольтметра и омметра.
Контролируются следующие параметры:
1. при значении Лямбда=0,9 (обогащенная горючая смесь) напряжение на сигнальном проводе должно быть не менее 0,65 В;
2. при значении лямбда=1,1 (обедненная горючая смесь) напряжение на сигнальном выводе должно быть не более 0,25 В;
3. время срабатывания при обедненной горючей смеси — не более 250 мс;
4. время срабатывания при обогащенной горючей смеси — не более 450 мс;
5. сопротивление при температуре 350 + 50 "С не более 10кОм.
Бензиновому двигателю для работы требуется смесь с определенным соотношением воздух-топливо. Соотношение, при котором топливо максимально полно и эффективно сгорает, называется стехиометрическим и составляет оно 14,7:1. Это означает, что на одну часть топлива следует взять 14,7 частей воздуха. На практике же соотношение воздух-топливо меняется в зависимости от режимов работы двигателя и смесеобразования. Двигатель становится неэкономичным. Это и понятно!
Коэффициент избыточности воздуха — L (лямбда) характеризует — насколько реальная топливно-воздушная смесь далека от оптимальной (14,7:1). Если состав смеси — 14,7:1, то L=1 и смесь оптимальна. Если L < 1, значит недостаток воздуха, смесь обогащенная. Мощность двигателя увеличивается при L=0,85 — 0,95. Если L > 1, значит налицо избыток воздуха, смесь бедная. Мощность при L=1,05 — 1,3 падает, но зато экономичность растет. При L > 1,3 смесь перестает воспламеняться и начинаются пропуски в зажигании. Бензиновые двигатели развивают максимальную мощность при недостатке воздуха в 5-15% (L=0,85 — 0,95), тогда как минимальный расход топлива достигается при избытке воздуха в 10-20%% (L=1,1 — 1,2). Таким образом соотношение L при работе двигателя постоянно меняется и диапазон 0,9 — 1,1 является рабочим диапазоном лямбда-регулирования. В то же время, когда двигатель прогрет до рабочей температуры и не развивает большой мощности (например работает на ХХ), необходимо по возможности более строгое соблюдение равенства L=1 для того, чтобы трехкомпонентный катализатор смог полностью выполнить свое предназначение и сократить объем вредных выбросов до минимума.
Датчик кислорода — он же лямбда-зонд — устанавливается в выхлопном коллекторе таким образом, чтобы выхлопные газы обтекали рабочую поверхность датчика. Материал его как правило циркониевый (используется керамический элемент на основе двуокиси циркония, покрытый платиной) — гальванический источник тока, меняющий напряжение в зависимости от температуры и наличия кислорода в окружающей среде. Конструкция его предполагает, что одна часть соединяется с наружним воздухом, а другая — с выхлопными газами внутри трубы. В зависимости от концентрации кислорода в выхлопных газах, на выходе датчика появляется сигнал. Уровень этого сигнала, для датчиков систем впрыска конца 80-х — начала 90-х годов, может быть низким (0,1…0,2В) или высоким (0,8…0,9В). Таким образом датчик кислорода — это своеобразный переключатель (триггер), сообщающий контроллеру впрыска о качественной концентрации кислорода в отработавших газах. Фронт сигнала между положениями "Больше" и "меньше" очень мал. Настолько мал, что его можно не рассматривать всерьез. Контроллер принимает сигнал с ЛЗ, сравнивает его с значением, прошитым в его памяти и, если сигнал отличается от оптимального для текущего режима, корректирует длительность впрыска топлива в ту или иную сторону. Таким образом осуществляется обратная связь с контроллером впрыска и точная подстройка режимов работы двигателя под текущую ситуацию с достижением максимальной экономии топлива и минимизацией вредных выбросов.
Лямбда-зонды бывают одно-, двух-, трех- и четырехпроводные. Однопроводные и двухпроводные датчики применялись в самых первых системах впрыска с обратной связью (лямбда-регулированием). Однопроводный датчик имеет только один провод, который является сигнальным. Земля этго датчика выведена на корпус и приходит на массу двигателя через резьбовое соединение. Двухпроводный датчик отличается от однопроводного наличием отдельного земляного провода сигнальной цепи. Недостатки таких зондов: рабочий диапазон температуры датчика начинается от 300 градусов. До достижения этой температуры датчик не работает и не выдает сигнала. Стало быть необходимо устанавливать этот датчик как можно ближе к цилиндрам двигателя, чтобы он подогревался и обтекался наиболее горячим потоком выхлопных газов. Процесс нагрева датчика затягивается и это вносит задержку в момент включения обратной связи в работу контроллера. Кроме того, использование самой трубы в качестве проводника сигнала (земля) требует нанесения на резьбу специальной токопроводящей смазки при установке датчика в выхлопной трубопровод и увеличивает вероятность сбоя (отсутствия контакта) в цепи обратной связи.
Указанных недостатков лишены трех- и четырехпроводные лямбда зонды. В трехпроводный ЛЗ добавлен специальный нагревательный элемент, который включен как правило всегда при работе двигателя и, тем самым, сокращает время выхода датчика на рабочую температуру. А так же позволяет устанавливать лямбда-зонд на удалении от выхлопного коллектора, рядом с катализатором. Однако остается один
www.drive2.ru
Peugeot 307 Ne_Do_308 › Бортжурнал › Диагностируем работоспособность датчика кислорода (лямбда)
Всем привет. Итак, как-то я писал о программке VTS Agent www.drive2.ru/l/3584889/, оценила мне она тогда впрыск плохенько.

Проблема была у меня, провал с 3000 до 4000 об/мин — поэтому ничего удивительного в такой оценке. Проблему решили заменой ДАД www.drive2.ru/l/3756181/ Решил я снять данные еще раз и скормить программе, должна оценить работу впрыска лучше. Так оно и получилось.

Но оценка работы лямбды упала. Что ж, хорошо, что в программе хранятся все старые замеры, давайте изучать мат. часть работы лямбды и смотреть на графики.
Что такое датчик кислорода?
Этот датчик смонтирован на выхлопном коллекторе на входе в каталитический преобразователь и непрерывно выдает напряжение на блок управления, отражающее содержание кислорода в выхлопных газах.
Это напряжение, которое анализируется блоком управления, используется для коррекции времени впрыска.
Богатая смесь:
• напряжение датчика: 0.6 В-0.9 В.
Бедная смесь:
• напряжение датчика: 0.1 В-0.3 В.
Внутреннее нагревательное устройство позволяет быстро достигать рабочей температуры, в данном случае свыше 350°C. Эта рабочая температура достигается в течение 15 секунд.
Резистор нагрева управляется блоком управления при помощи прямоугольных сигналов с целью контроля температуры датчика кислорода.
Когда температура выхлопных газов выше 800°C, датчик кислорода больше не подогревается.
На определенных этапах работы двигателя система работает без обратной связи. Это означает, что блок управления игнорирует сигнал, посылаемый датчиком.
Эти этапы возникают:
• когда двигатель холодный (температура менее 20°C),
• при высокой нагрузке двигателя.
Причины преждевременного выхода из строя датчика кислорода:
1. Применение этилированного бензина или несоответствующей марки топлива.
2. Использование при установке датчика герметиков, вулканизирующихся при комнатной температуре или содержащих в своем составе силикон.
3. Перегрев датчика из-за неправильно установленного угла опережения зажигания, переобогащения топливо-воздушной смеси, перебоев в зажигании и т. д. (к этому можно отнести мой случай, неизвестно сколько машина ездила с плохо работающим ДАД? Так же предыдущая хозяйка меняла катушку, только не рассказала почему)
4. Многократные (неудачные) попытки запуска двигателя через небольшие промежутки времени, что приводит к накапливанию не сгоревшего топлива в выпускном трубопроводе, которое может воспламениться с образованием ударной волны.
5. Проверка работы цилиндров двигателя с отключением свечей зажигания.
6. Попадание на керамический наконечник датчика любых эксплуатационных жидкостей, растворителей и моющих средств.
7. Обрыв, плохой контакт или замыкание на "массу" выходной цепи датчика.
8. Негерметичность в выпускной системе. (это тоже можно отнести к моему случаю, была проблема с прокладкой между коллектором и катализатором)
Возможные признаки неисправности датчика кислорода:
1. Неустойчивая работа двигателя на малых оборотах.
2. Повышенный расход топлива. (После замены дад расход уменьшился, но все же я считаю, что он завышен для 1.6)
3. Ухудшение динамических характеристик автомобиля. (Возможно потеря мощности на низах, замена покажет, пока что в теории)
4. Характерное потрескивание в районе расположения каталитического нейтрализатора после остановки двигателя. (да, такое есть, я думаю это остывает катализатор, но мало ли это как-то связано)
5. Повышение температуры в районе каталитического нейтрализатора или его нагрев до раскаленного состояния.
6. Загорание лампы "СНЕСК ЕNGINЕ" при установившемся режиме движения.
Как понять насколько работоспособен датчик?
Вообще-то для этого потребуется осциллограф. Ну или специальный мотор-тестер (в случае с машиной Peugeot 307 это копия дилерского диагностического оборудования и программа Peugeot Planet 2000), на дисплее которого можно наблюдать осциллограмму изменения сигнала на выходе. Наиболее интересными являются пороговые уровни сигналов высокого и низкого напряжения (со временем, при выходе датчика из строя, сигнал низкого уровня повышается (более 0,2В — криминал), а сигнал высокого уровня — снижается (менее 0,8В — криминал)), а также скорость изменения фронта переключения датчика из низкого в высокий уровень. Есть повод задуматься о предстоящей замене датчика, если длительность этого фронта превышает 300 мсек. Это усредненные данные.
Как второй датчик кислорода проверяет эффективность работы каталитического нейтрализатора?
Датчик кислорода на выходе используется для соблюдения требований стандарта EOBD (Европейский стандарт по встроенной диагностике уровня вредных выбросов).
Он располагается после каталитического преобразователя и используется для проверки эффективности работы каталитического преобразователя.
Характеристики и нагревательное устройство для датчика кислорода на выходе такие же, как для датчика кислорода на входе.
Блок управления отвечает за анализ напряжения, выдаваемого датчиком кислорода на выходе. Это напряжение отражает содержание кислорода в выхлопных газах на выходе каталитического преобразователя.
Напряжение, выдаваемое датчиком кислорода на выходе, смещено относительно датчика кислорода на в
www.drive2.ru
Что нужно знать о лямбда зонд — DRIVE2

1- металлический корпус с резьбой.
2 — уплотнительное кольцо.c 3 — токосъемник электрического сигнала.
4 — керамический изолятор.
5 — проводка.
6 — манжета проводов уплотнительная.
7 — токопроводящий контакт цепи подогрева.
8 — наружный защитный экран с отверстием для атмосферного воздуха.
9 — подогрев.
10 — наконечник из керамики.
11 — защитный экран с отверстием для отработавших газов
Место установки датчика кислорода.
В связи с тем, что датчик кислорода может вырабатывать электрический сигнал только при температуре 300-350°С и выше, датчики без нагревателя устанавливаются в выпускном трубопроводе ближе к двигателю, а с нагревательными элементами — перед нейтрализатором.
В некоторых автомобилях в каталитическом нейтрализаторе установлен датчик температуры, который не следует путать с кислородным. Иногда (ФМ-3)устанавливается два кислородных датчика — до нейтрализатора и после него (ST220 — два ката и 4 лямбды).
1. назначение, применение.
Для корректировки оптимальной смеси горючего с воздухом
применение приводит к повышению экономичности автомобиля, влияет на мощность двигателя, динамику, а также на экологические показатели.
Бензиновому двигателю для работы требуется смесь с определенным соотношением воздух-топливо. Соотношение, при котором топливо максимально полно и эффективно сгорает, называется стехиометрическим и составляет оно 14,7:1. Это означает, что на одну часть топлива следует взять 14,7 частей воздуха. На практике же соотношение воздух-топливо меняется в зависимости от режимов работы двигателя и смесеобразования. Двигатель становится неэкономичным. Это и понятно!
Таким образом датчик кислорода — это своеобразный переключатель (триггер), сообщающий контроллеру впрыска о качественной концентрации кислорода в отработавших газах. Фронт сигнала между положениями "Больше" и "меньше" очень мал. Настолько мал, что его можно не рассматривать всерьез. Контроллер принимает сигнал с ЛЗ, сравнивает его с значением, прошитым в его памяти и, если сигнал отличается от оптимального для текущего режима, корректирует длительность впрыска топлива в ту или иную сторону. Таким образом осуществляется обратная связь с контроллером впрыска и точная подстройка режимов работы двигателя под текущую ситуацию с достижением максимальной экономии топлива и минимизацией вредных выбросов.
Функционально лямбда-зонд работает, как переключатель и выдает опорное напряжение (0.45V) при низком содержании кислорода в выхлопных газах. При высоком уровне кислорода датчик О2 снижает снижает свое напряжение до ~0.1-0.2В. При этом, важным параметром является скорость переключения датчика. В большинстве систем впрыска топлива О2-датчик имеет выходное напряжение от от 0.04.0.1 до 0.7…1.0В. Длительность фронта должна быть не более 120мСек. Следует отметить, что многие неисправности лямбда-зонда контроллерами не фиксируются и судить о его исправной работе можно только после соответствующей проверки.
Лямбда-зонд действует по принципу гальванического элемента с твердым электролитом в виде керамики из диоксида циркония (ZrO2). Керамика легирована оксидом иттрия, а поверх нее напылены токопроводящие пористые электроды из платины. Один из электродов «дышит» выхлопными газами, а второй – воздухом из атмосферы. Эффективное измерение остаточного кислорода в отработавших газах лямбда-зонд обеспечивает после разогрева до температуры 300 – 400оС. Только в таких условиях циркониевый электролит приобретает проводимость, а разница в количестве атмосферного кислорода и кислорода в выхлопной трубе ведет к появлению на электродах лямбда-зонда выходного напряжения.
Для повышения чувствительности лямбда-зондов при пониженных температурах и после запуска холодного двигателя используют принудительный подогрев. Нагревательный элемент (НЭ) расположен внутри керамического тела датчика и подключается к электросети автомобиля
Элемент зонда, сделанный на основе диоксида титана не производят напряжение а меняет свое сопротивление (нас этот тип не касается).
При пуске и прогреве холодного двигателя управление впрыском топлива осуществляется без участия этого датчика, а коррекция состава топливо-воздушной смеси осуществляется по сигналам других датчиков (положения дроссельной заслонки, температуры охлаждающей жидкости, числа оборотов коленвала и др.). Особенностью циркониевого лямбда-зонда является то, что при малых отклонениях состава смеси от идеального (0,97 Ј l Ј 1,03) напряжение на его выходе изменяется скачком в интервале 0,1 — 0,9 В
Кроме циркониевых, существуют кислородные датчики на основе двуокиси титана (TiO2). При изменении содержания кислорода (О2) в отработавших газах они изменяют свое объемное сопротивление. Генерировать ЭДС титановые датчики не могут; они конструктивно сложны и дороже циркониевых, поэтому, несмотря на применение в некоторых автомобилях (Nissan, BMW, Jaguar), широкого распространения не получили.
2. Совместимость, взаимозаменяемость.
-принцип работы лямбда-зонда у всех производителей в общем одинаков. Совместимость чаще всего обусловлена на уровне посадочных размеров.
-различаются монтажными размерами и разъемом
-Можно купить оригинальный датчик б/у, что чревато пустыми тратами: на нем не написано, в каком он состоянии, а проверить вы его сумеете только на автомобиле
3. Виды.
а) с подогревом и без подогрева
б) кол-вом проводов: 1-2-3-4 т.е. соответственно и комбинацией с/без подогрева.
в) из разных материалов: циркониево-платиновые и подороже на основе двуокиси титана (TiO2)
Титановые лямбда-зонды от циркониевых легко отличить по цвету «накального» вывода подогревателя – он всегда красный.
г) широкополосная для дизелей и двигателей работающих на обедненной смеси.
4. Как и почему умирает.
— плохой бензин, свинец, железо забивают платиновые электроды за несколько "удачных" заправок.
— масло в выхлопной трубе — Плохое состояние маслосъемных колец
-попадание на нее моющих жидкостей и растворителей
-"хлопки" в выпуске разрушающие хрупкую керамику
-удары
— перегрев его корпуса из-за неправильно установленного угла опережения зажигания, сильно переобогащенной топливной смеси.
— Попадание на керамический наконечник датчика любых эксплуатационных жидкостей, растворителей, моющих средств, антифриза
— обогащенная топливно-воздушная смесь,
— сбои в системе зажигания, хлопки в глушителе
— Использование при установке датчика герметиков, вулканизирующихся при комнатной температуре или содержащих в своем составе силикон
— Многократные (неудачные) попытки запуска двигателя через небольшие промежутки времени, что приводит к накапливанию несгоревшего топлива в выпускном трубопроводе, которое может воспламениться с образованием ударной волны.
— Обрыв, плохой контакт или замыкание на "массу" выходной цепи датчика.
Ресурс датчика содержания кислорода в выхлопных газах обычно составляет от 30 до 70 тыс.км. и в значительной степени зависит от условий эксплуатации. Дольше служат, как правило, датчики с подогревом. Рабочая температура для них обычно 315-320°C.
Перечень возможных неисправностей лямбда-зонда:
-неработающий подогрев
-потеря чувствительности — уменьшение быстродействия
Причем это как правило самодиагностикой автомобиля не фиксируются.
Решение о замене датчика можно принять после его проверки на осцилографе.
Следует особо отметить, что попытки замены неисправного лямбда-зонда имитатором ни к чему не приведут — ЭБУ не распознает "чужие" сигналы, и не использует их для коррекции состава приготавливаемой горючей смеси, т.е. попросту "игнорирует".
Можно использовать и такой способ:
Если лямбда работала на нашем бензине более 2-3-х лет то можно не тратиться на ее проверку.
Ее стоит менять уже хотя бы по возрасту. Быстродействие все равно уже далеко от оптимального.
В автомобилях, система l-коррекции которых имеет два кислородных датчика, дело обстоит еще сложнее. В случае отказа второго лямбда-зонда (или "пробивки" секции катализатора) добиться нормальной работы двигателя сложно.
Как понять насколько работоспособен датчик?
Для этого потребуется осциллограф. Ну или специальный мотор-тестер, на дисплее которого можно наблюдать осциллограмму изменения сигнала на выходе ЛЗ. Наиболее интересными являются пороговые уровни сигналов высокого и низкого напряжения (со временем, при выходе датчика из строя, сигнал низкого уровня повышается (более 0,2В — криминал), а сигнал высокого уровня — снижается (менее 0,8В — криминал)), а также скорость изменения фронта переключения датчика из низкого в высокий уровень. Есть повод задуматься о предстоящей замене датчика, если длительность этого фронта превышает 300 мсек.
Это усредненные данные.
Возможные признаки неисправности датчика кислорода:
— Неустойчивая работа двигателя на малых оборотах.
— Повышенный расход топлива.
— Ухудшение динамических характеристик автомобиля.
— Характерное потрескивание в районе расположения каталитического нейтрализатора после остановки двигателя.
— Повышение температуры в районе каталитического нейтрализатора или его нагрев до раскаленного состояния.
— На некоторых автомобилях загорание лампы "СНЕСК ЕNGINЕ" при установившемся режиме движения
5. Как снять — установить.
Нужен подходящий ключ.
Для установки оптимально спец. высокая головка с прорезью для проводов и гранями снаружи.
Откручивать лучше на горячую, меньше риск сорвать прикипевшую резьбу.
Резьбовая часть как правило уже имеет спец смазку (высокотемпературную, токопроводящую). можно добавить и графитки.
Разъем надо поднять повыше оберегая от воды и грязи. Контакты смазать.
Если провода скручивались их тоже надо покрыть графиткой — окисляться не будут.
Насчет пайки надо хорошо подумать.
Дело в том что лямбда получает кислород по эл. проводам. Обратите внимание все разъемы лямбд непаянные а обжимные.
Полагаю лучше так и делать, обжимать-скручивать.
Снимать датчик стоит при работающем двигателе особого смысла нет. Он не так уж быстро остывает. А шанс получить пару ожогов есть реальный.
Просто пока трубопровод и датчик горячий.
После замены неплохо бы обнулить память путем снимания на 5-10 минут (-)клеммы с аккумулятора.

6. Для маргиналов. "Оживление" лямбды.
Во Владивостоке технология "оживления" лямбда-зонда уже отработана. Оказывается, достаточно продержать датчик десять минут в ортофосфорной кислоте при комнатной температуре, затем промыть водой — и он снова в строю. Правда, сигнал восстанавливается не сразу, а через час-полтора работы двигателя.
Для промывки датчик лучше вскрыть. На токарном стаже тонким резцом срезают у самого основания колпачок с отверстиями. Датчик (он представляет собой керамический стержень с напыленными платиновыми полосками) окунают в кислоту. Кислота разрушает нагар и свинцовую пленку на поверхности стержня. Важно не передержать датчик — могут разрушиться токопроводящие платиновые электроды. Зачищать его шкуркой или другим абразивом нельзя по той же причине. Очистив стержень от токопроводящей пленки, его промывают в воде и крепят колпачок каплей нержавеющей проволоки аргоновой сваркой.
Ученые из дальневосточного отделения РАН предлагают другой путь восстановления — более сложный и весьма надежный. Как известно из физики, плотность тока в газах определяется концентрацией ионов, их подвижностью и величиной заряда. В выхлопных газах ионы образуются от нагрева. Поскольку температура (стало быть, подвижность ионов) и напряженность поля (на электроды подается напряжение 1 В) известны, выходные его характеристики зависят лишь от концентрации ионов. Их замеряют осциллографом и частотомером (около 2 МГц). Далее на ультразвуковом диспергаторе в эмульсионном растворе проводится "мягкая зачистка" напыленных электродов. Возможен электролиз вязких металлов, осевших на их поверхности. При этом учитываются конструктивные особенности зонда и материал (металлокерамика или фарфор) с напылением малоинерционных металлов (платина, барий, цирконий и пр.). Восстановленный датчик испытывают приборами и устанавливают на автомобиль. Операцию можно проводить многократно.
Так российские инженеры и ученые доказали справедливость пословицы: "Голь на выдумки хитра", сумев разработать простую и остроумную технологию.
www.drive2.ru
Honda Partner Ha CTI/IJIE › Бортжурнал › Обманка на второй лямбда зонд или датчик перегрева катализатора
После покупки выпускного коллектора 4-2-1 (паук) появилась необходимость в покупке или изготовлении обманки, так как загорается лампочка "Check engine" на панели приборов. Загорается потому, что в новом коллекторе нету катализатора.

Катализатор — это устройство, которое располагается в выхлопной системе для очистки выхлопных газов. С помощью химических реакций вредные вещества, которые загрязняют атмосферу, превращаются в менее пагубные, которые и выходят наружу. Катализатор начинает работать только после нагревания, т.е. при пуске холодного двигателя нейтрализатор бездействует.
Первый лямбда зонд служит для коррекции топливной смеси.
Второй лямбда зонд служит для контроля целостности первого катализатора. Если катализатор забит или удален — будет зажигаться лампочка Check Engine на приборной панели.
Чтобы этого не происходило второй лямбда зонд необходимо "обмануть", чтобы мозги "думали, что с первым катализатором у нас все хорошо, он цел и на месте.

Какие могут возникнуть проблемы с вынутым катализатором и не обманутым лямбда зондом?
Светящейся лампочкой Check Engine и повышенный расход топлива (мозги уходят в аварийный режим).
У кого то второй датчик с завода не предусмотрен, у кого то он одно контактный, у кого то как у меня 4-х контактный. Тем у кого один контакт повезло, им не нужно ничего покупать и придумывать. Просто кидайте контакт на массу. Тем у кого четырех контактный обязательно нужно ставить обманку.
Обманка бывает механической и электронной.
Механическая обманка лямбда-зонда – это не что иное, как обыкновенная втулка (проставка) между местом крепления датчика (поверхностью приемной трубы, коллектора) и самим зондом. Проставка изготавливается из качественной термостойкой стали или бронзы. Она представляет собой полый цилиндр, заполненный керамической крошкой. Сторона, которой обманка крепится к элементу выхлопной системы, имеет резьбу и тонкое осевое отверстие.

Суть метода заключается в том, чтобы сместить датчик кислорода подальше от коллектора или приемной трубы. В этом случае выхлопные газы, проходя через тонкое отверстие (в малой концентрации), попадают на керамическую крошку, где окисляются под воздействием температуры. Концентрация вредных веществ, естественно, при этом снижается.
Обманка электронного типа – это более сложное устройство. Оно также применяется при выходе из строя катализатора. Его принцип работы заключается в том, чтобы преобразовать сигнал, идущий от датчика к электронному блоку управления в такой, чтобы его характеристики были такими, как будто катализатор работает в обычном режиме.

Обманка подключается непосредственно к проводам, которые идут от лямбда-зонда к контроллеру. Основой таких обманок часто является программируемый микропроцессор, но собрать простейшую версию можно и самостоятельно, конечно, если вы дружите с паяльником.
Я выбрал самый простой и дешёвый вариант. Для этого приобрел 2 детали: резистор (сопротивление) на 1 МОм (мегаОм) и керамический конденсатор на 1 мКф (микроФарад) в магазине радиодеталей. Подключаем по следующей схеме:

Сигнальный провод БЕЛЫЙ, а зеленый масса. Черные провода нагрева.
Вот что получилось:

Полный размер
Провода лямбда зонда удлинил на 1.20 м, так как установочное место стало дальше
При сварке нового выхлопа попросил сварщика найти новое место для второго лямбда зонда, так как в заводском отверстии паука, лямбда зонд задевал привод.

Полный размер
Новое место второго лямбда зонда
www.drive2.ru
Вся правда про лямбда-зонд — DRIVE2
Бензиновому двигателю для работы требуется смесь с определенным соотношением воздух-топливо. Соотношение, при котором топливо максимально полно и эффективно сгорает, называется стехиометрическим и составляет оно 14,7:1. Это означает, что на одну часть топлива следует взять 14,7 частей воздуха. На практике же соотношение воздух-топливо меняется в зависимости от режимов работы двигателя и смесеобразования. Двигатель становится неэкономичным. Это и понятно!
Коэффициент избыточности воздуха — L (лямбда) характеризует — насколько реальная топливно-воздушная смесь далека от оптимальной (14,7:1). Если состав смеси — 14,7:1, то L=1 и смесь оптимальна. Если L < 1, значит недостаток воздуха, смесь обогащенная. Мощность двигателя увеличивается при L=0,85 — 0,95. Если L > 1, значит налицо избыток воздуха, смесь бедная. Мощность при L=1,05 — 1,3 падает, но зато экономичность растет. При L > 1,3 смесь перестает воспламеняться и начинаются пропуски в зажигании. Бензиновые двигатели развивают максимальную мощность при недостатке воздуха в 5-15% (L=0,85 — 0,95), тогда как минимальный расход топлива достигается при избытке воздуха в 10-20%% (L=1,1 — 1,2). Таким образом соотношение L при работе двигателя постоянно меняется и диапазон 0,9 — 1,1 является рабочим диапазоном лямбда-регулирования. В то же время, когда двигатель прогрет до рабочей температуры и не развивает большой мощности (например работает на ХХ), необходимо по возможности более строгое соблюдение равенства L=1 для того, чтобы трехкомпонентный катализатор смог полностью выполнить свое предназначение и сократить объем вредных выбросов до минимума.
Датчик кислорода — он же лямбда-зонд — устанавливается в выхлопном коллекторе таким образом, чтобы выхлопные газы обтекали рабочую поверхность датчика. Материал его как правило циркониевый (используется керамический элемент на основе двуокиси циркония, покрытый платиной) — гальванический источник тока, меняющий напряжение в зависимости от температуры и наличия кислорода в окружающей среде. Конструкция его предполагает, что одна часть соединяется с наружним воздухом, а другая — с выхлопными газами внутри трубы. В зависимости от концентрации кислорода в выхлопных газах, на выходе датчика появляется сигнал. Уровень этого сигнала, для датчиков систем впрыска конца 80-х — начала 90-х годов, может быть низким (0,1…0,2В) или высоким (0,8…0,9В). Таким образом датчик кислорода — это своеобразный переключатель (триггер), сообщающий контроллеру впрыска о качественной концентрации кислорода в отработавших газах. Фронт сигнала между положениями "Больше" и "меньше" очень мал. Настолько мал, что его можно не рассматривать всерьез. Контроллер принимает сигнал с ЛЗ, сравнивает его с значением, прошитым в его памяти и, если сигнал отличается от оптимального для текущего режима, корректирует длительность впрыска топлива в ту или иную сторону. Таким образом осуществляется обратная связь с контроллером впрыска и точная подстройка режимов работы двигателя под текущую ситуацию с достижением максимальной экономии топлива и минимизацией вредных выбросов.
Лямбда-зонды бывают одно-, двух-, трех- и четырехпроводные. Однопроводные и двухпроводные датчики применялись в самых первых системах впрыска с обратной связью (лямбда-регулированием). Однопроводный датчик имеет только один провод, который является сигнальным. Земля этого датчика выведена на корпус и приходит на массу двигателя через резьбовое соединение. Двухпроводный датчик отличается от однопроводного наличием отдельного земляного провода сигнальной цепи. Недостатки таких зондов: рабочий диапазон температуры датчика начинается от 300 градусов. До достижения этой температуры датчик не работает и не выдает сигнала. Стало быть необходимо устанавливать этот датчик как можно ближе к цилиндрам двигателя, чтобы он подогревался и обтекался наиболее горячим потоком выхлопных газов. Процесс нагрева датчика затягивается и это вносит задержку в момент включения обратной связи в работу контроллера. Кроме того, использование самой трубы в качестве проводника сигнала (земля) требует нанесения на резьбу специальной токопроводящей смазки при установке датчика в выхлопной трубопровод и увеличивает вероятность сбоя (отсутствия контакта) в цепи обратной связи.
Указанных недостатков лишены трех- и четырехпроводные лямбда зонды. В трехпроводный ЛЗ добавлен специальный нагревательный элемент, который включен как правило всегда при работе двигателя и, тем самым, сокращает время выхода датчика на рабочую температуру. А так же позволяет устанавливать лямбда-зонд на удалении от выхлопного коллектора, рядом с катализатором. Однако остается один недостаток — токопроводящий выхлопной коллектор и необходимость в токопроводящей смазке. Этого недостатка лишен четырехпроводный лямбда-зонд — у него все провода служат для своих целей — два на подогрев, а два — сигнальные. При этом вкручивать его можно так как заблагорассудится.
Несколько слов о взаимозаменяемости датчиков. Лямбда-зонд с подогревом может устанавливаться вместо такого же, но без подогрева. При этом необходимо смонтировать на автомобиль цепь подогрева и подключить ее к цепи, запитываемой при включении зажигания. Самое выгодное — в параллель к цепи питания электробензонасоса. Не допускается обратная замена — установка однопроводного датчика вместо трех- и более- проводных. Работать не будет. Ну и конечно необходимо, чтобы резьба датчика совпадала с резьбой, нарезанной в штуцере.
Как понять насколько работоспособен датчик? Ввобще-то для этого потребуется осциллограф. Ну или специальный мотор-тестер, на дисплее которого можно наблюдать осциллограмму изменения сигнала на выходе ЛЗ. Наиболее интересными являются пороговые уровни сигналов высокого и низкого напряжения (со временем, при выходе датчика из строя, сигнал низкого уровня повышается (более 0,2В — криминал), а сигнал высокого уровня — снижается (менее 0,8В — криминал)), а также скорость изменения фронта переключения датчика из низкого в высокий уровень. Есть повод задуматься о предстоящей замене датчика, если длительность этого фронта превышает 300 мсек. Это усредненные данные. В реальной жизни для оценки состояния лямбда-зонда необходимо провести цикл измерений. Не имея под рукой мотор-тестера или осциллографа определить неисправность лямбда-зонда можно пользуясь бортовой системой диагностики, существующей в контроллере системы впрыска, которая фиксирует в своей памяти случаи, когда сигнал с ЛЗ выходил за определенные пределы. Фиксация неисправностей производится при помощи запоминания специальных кодов, которые могут быть считаны в тестовом режиме. Однако не всегда можно с уверенностью поставить четкий диагноз о неисправности лямбда-зонда пользуясь только бортовой системой диагностики. Об этом стоит помнить! Не поленитесь съездить на диагностику.
На что менять? Самое лучшее — это менять датчик на такой, какой стоит в списке запчастей для Вашего автомобиля. В таком случае гарантия работоспособности системы после замены будет 100%. Но не всегда по финансовым соображениям выгодно гоняться за оригинальными каталожными датчиками. Ведь тот же Bosch выпускает лямбда-датчики и для других моделей. И они по принципу работы одинаковы, а внешне очень похожи. Ну и что, что каталожный номер будет стоять другой. При правильной установке и грамотном подборе можно съэкономить весьма кругленькую сумму, купив "жигулевский" датчик от фирмы Bosch за 10-20$ вместо точно такого же по сути, но фирменного за 100$ и работать он будет ничуть не хуже. Найти ЛЗ в магазине сейчас можно все чаще и чаще, а значит они будут дешеветь.
Порядок замены ЛЗ таков:
1. Отсоединить кабель ЛЗ от электропроводки.
2. Снять старый ЛЗ используя подходящий ключ. Лучше если это будет высокая головка или накидной — так вероятность повредить грани приржавленного ЛЗ будет меньше, но у меня нормально открутился на работающем моторе накидным ключом. Снимать датчик стоит при работающем двигателе. Т.е. пока трубопровод и датчик горячий. В противном случае есть вероятность отломать датчик или сорвать резьбу, т.к. металл сжимается и выворачивать очень трудно. Выкручивайте датчик до тех пор, пока из отверстия не пойдет дымок. Потом глушите машину и откручивайте совсем.
3. Отрезать аккуратно провода от старого ЛЗ и соединить с проводами нового, которые тоже придется отрезать от колодки. Схема соединения зависит от того — какой ЛЗ Вы купили. Но обычные цвета и предназначение проводов даны чуть выше, на картинках.
4. Следует иметь ввиду, что если штатный лямбда-зонд трехпроводный, то у него провода подписаны (см. на разъеме) "А" и "Б" — подогрев, "С" — сигнальный. Провода подогрева белого цвета (полярность не имеет значения), а сигнальный провод — черный.
5. Четвертый (незадействованный ранее) провод стоит вывести и надежно прикрутить к массе двигателя. Проверить также соединение двигателя с массой корпуса. Я прикрутил его под болт крепления главного тормозного цилиндра (в торце кронштейн) — мне так показалось удобнее.
6. Вкрутить новый ЛЗ. Если он четырехпроводный, то токопроводящая смазка не нужна. Достаточно графитовой — для смазки резьбовых соединений.
7. Соединение проводов не стоит осуществлять скруткой проводов — этот вариант ненадежен и долго не проживет. Самое лучшее — это спаять все положенные провода и хорошенько заизолировать. Паять провода стоит до того, как ЛЗ установлен в трубе, т.е. на столе.
8. После замены рекомендую обнулить память контроллера путем снимания на несколько секунд (-)клеммы с аккумулятора. Только подумайте предварительно — не отключатся ли у вас какие нибудь электроприборы типа магнитол, CD-чейнджеров и пр. и не встанут ли они после этого на код. Это важно.
Источник:avto-remont.com/
www.drive2.com