Турбина из чего состоит


Турбина — Википедия

Монтаж паровой турбины, произведённой Siemens, Германия.

Турби́на (фр. turbine от лат. turbo — вихрь, вращение) — лопаточная машина, в которой происходит преобразование [1]кинетической энергии и/или внутренней энергии рабочего тела (пара, газа, воды) в механическую работу на валу. Струя рабочего тела воздействует на лопатки, закреплённые по окружности ротора, и приводит их в движение.

Применяется в качестве привода электрического генератора на тепловых, атомных и гидро электростанциях, как составная часть приводов на морском, наземном и воздушном транспорте, привода компрессора в газотурбинном двигателе, а также гидродинамической передачи, гидронасосах.

Звук небольшой пневматической турбины, использовавшейся для привода генератора немецкой шахтёрской лампы 1940-х гг. Древнеримская турбинная мельница в Чемту, Тунис. Тангенциально направленный поток воды вращал погруженное в воду горизонтальное колесо на вертикальной оси

Попытки создать механизмы, похожие на турбины, делались очень давно. Известно описание примитивной паровой турбины, сделанное Героном Александрийским (1 в. н. э.). По словам И. В. Линде[2], XIX век породил «массу проектов», которые остановились перед «материальными трудностями» их выполнения. Лишь в конце XIX века, когда развитие термодинамики (повышение КПД турбин до сравнимого с поршневой машиной), машиностроения и металлургии (увеличение прочности материалов и точности изготовления, необходимых для создания высокооборотных колёс), Густаф Лаваль (Швеция) и Чарлз Парсонс (Великобритания) независимо друг от друга создали пригодные для промышленности паровые турбины.[3]

Хронология[править | править код]

Разработки Густафа Лаваля[править | править код]

Первую паровую турбину создал шведский изобретатель Густав Лаваль в 1883 году. По одной из версий, Лаваль создал её для того, чтобы приводить в действие сепаратор молока собственной конструкции. Для этого нужен был скоростной привод. Двигатели того времени не обеспечивали достаточную частоту вращения. Единственным выходом оказалось сконструировать скоростную турбину. В качестве рабочего тела Лаваль выбрал широко используемый в то время пар. Изобретатель начал работать над своей конструкцией и в конце концов собрал работоспособное устройство. В 1889 году Лаваль дополнил сопла турбины коническими расширителями, так появилось знаменитое сопло Лаваля, которое стало прародителем будущих ракетных сопел. Турбина Лаваля стала прорывом в инженерии. Достаточно представить себе нагрузки, которые испытывало в ней рабочее колесо, чтобы понять, как нелегко было изобретателю добиться стабильной работы турбины. При огромных оборотах турбинного колеса даже незначительное смещение в центре тяжести вызывало сильную вибрацию и перегрузку подшипников. Чтобы избежать этого, Лаваль использовал тонкую ось, которая при вращении могла прогибаться.

Разработки Чарлза Парсонса[править | править код]

Схема активной и реактивной турбин, где ротор — вращающаяся часть, а статор — неподвижная.

В 1884 году английский инженер Чарлз Парсонс получил патент на многоступенчатую турбину. Турбина предназначалась для приведения в действие электрогенератора. В 1885 году он разработал усовершенствованную версию, которая получила широкое применение на электростанциях. В конструкции турбины был применен выравнивающий аппарат, представляющий из себя набор неподвижных венцов (дисков) с лопатками, имевшими обратное направление. Турбина имела три ступени разного давления с разной геометрией лопаток и шагом их установки. Таким образом, в турбине использовался как «активный», так и «реактивный» принцип.

В 1889 году уже около трехсот таких турбин использовалось для выработки электроэнергии. Парсонс старался расширить сферу применения своего изобретения и в 1894 году он построил опытовое судно «Турбиния» с приводом от паровой турбины. На испытаниях оно продемонстрировало рекордную скорость — 60 км/ч.

Невозможность получить большую агрегатную мощность и очень высокая частота вращения одноступенчатых паровых турбин Лаваля (до 30 000 об/мин у первых образцов) привели к тому, что они сохранили своё значение только для привода вспомогательных механизмов. Активные паровые турбины развивались в направлении создания многоступенчатых конструкций, в которых расширение пара осуществлялось в ряде последовательно расположенных ступеней. Это позволило значительно повысить единичную мощность, сохранив умеренную частоту вращения, необходимую для непосредственного соединения вала турбины с вращаемым ею механизмом.

Реактивная паровая турбина Парсонса некоторое время применялась (в основном, на военных кораблях), но постепенно уступила место более компактным комбинированным активно-реактивным турбинам, у которых реактивная часть высокого давления заменена одно- или двухвенчатым активным диском. В результате уменьшились потери на утечки пара через зазоры в лопаточном аппарате, турбина стала проще и экономичнее.

Модель одной ступени паровой турбины Паровая турбина с раскрытым статором. На верхней части статора видны лопатки соплового аппарата.

Ступень турбины состоит из двух основных частей. Рабочего колеса — лопаток установленных на роторе(подвижная часть турбины), которое непосредственно создаёт вращение. И Соплового аппарата — лопаток установленных на статоре (неподвижная часть турбины), которые поворачивают рабочее тело для придания потоку необходимого угла атаки по отношению к лопаткам рабочего колеса.

По направлению движения потока рабочего тела различают аксиальные паровые турбины, у которых поток рабочего тела движется вдоль оси турбины, и радиальные, направление потока рабочего тела в которых перпендикулярно оси вала турбины. Центробежные турбины (турбокомпрессоры) также выделяют как отдельный тип турбин.

По числу контуров турбины подразделяют на одноконтурные, двухконтурные и трёхконтурные. Очень редко турбины могут иметь четыре или пять контуров. Многоконтурная турбина позволяет использовать большие тепловые перепады энтальпии, разместив большое число ступеней разного давления.

По числу валов различают одновальные, двухвальные, реже трёхвальные, связанных общностью теплового процесса или общей зубчатой передачей (редуктором). Расположение валов может быть как коаксиальным так и параллельным с независимым расположением осей валов.

В местах прохода вала сквозь стенки корпуса установлены концевые уплотнения для предупреждения утечек рабочего тела наружу и засасывания воздуха в корпус.

На переднем конце вала устанавливается предельный центробежный регулятор (регулятор безопасности), автоматически останавливающий (замедляющий) турбину при увеличении частоты вращения на 10—12 % сверх номинальной.

По типу рабочего тела[править | править код]

  1. Техническая энциклопедия / Главный редактор Л. К. Мартенс. — М: Государственное словарно-энциклопедическое издательство "Советская энциклопедия", 1934. — Т. 24. — 31 500 экз.
  2. ↑ И. В. Линде. Паровые турбины, вентиляторы и центробежные насосы высокого давления системы инженера А. Рато. // Записки Московскаго отделения Императорского русского технического общества, 1904. С. 563—641.
  3. Константин Владиславович Рыжов. [lib.aldebaran.ru/author/ryzhov_konstantin/ryzhov_konstantin_100_velikih_izobretenii/ 100 великих изобретений]. — М., 2006. — ISBN 5‑9533‑0277‑0.
  4. 1 2 Билимович Б. Ф. Законы механики в технике. — М.: Просвещение, 1975. — Тираж 80000 экз. — С. 169.
  5. Меркулов И. А. Газовая турбина / под ред. проф. А. В. Квасникова. — Москва: Государственное издательство технико-теоретической литературы, 1957. — С. 25 – 26.

ru.wikipedia.org

Турбина. Устройство и принцип действия. — DRIVE2

Лет семь назад я написал на ресурсе mcautotuner ряд статей для любителей "дунуть") Отзывы очень приятные, думаю что весьма актуально будет выложить статьи на нашем любимом Драйв2

Турбина. Устройство и принцип действия.

Практически для каждого человека, интересующегося автомобилем и его устройством, важно понимание основных принципов работы турбонаддува. Тем более, что в настоящее время появляется все больше и больше серийных образцов автомобилей, оснащенных турбонагнетателями.

Даже Mercedes, традиционно преданный механическим нагнетателям, осознав плюсы турбонаддува, оснащает этой системой все больше и больше моделей, не говоря уже о BMW, Японских автопроизводителях!

Можно сколько угодно повторяться в статьях про турбины, но это все будет не более чем своя трактовка общеизвестных фактов. Я не буду изобретать велосипед, и в этой заметке буду отталкиваться от информации "из уст" одного из ведущих производителей турбин — фирмы Garrett, однако внесу немного дополнительной информации.

Итак,

***

Каков принцип работы системы турбонаддува?

Мощность двигателя пропорциональна объему воздуха и топлива, способного войти в цилиндры. При прочих равных, бОльшие двигатели потребляют бОльший поток воздуха и как результат, дают бОльшую мощность. Если мы хотим чтобы наш крошка-мотор работал также как двигатель-богатырь, либо если нам надо, чтобы уже не маленький двигатель выдавал еще бОльшую мощность, наша цель — "впихнуть" больше воздуха в цилиндр. Установив турбонагнетатель мы сможем резко увеличить характеристики двигателя.

Так каким-же образом турбонагнетатель "запихивает" больше воздуха в двигатель? Давайте для начала обратимся к схеме ниже:

1. Входное отверстие "холодной части" турбокомпрессора (она же — compressor)

2. Выход "холодной части" турбокомпрессора (она же — compressor)

3. Промежуточный охрадитель воздуха (интеркулер — intercooler)

4. Впускной клапан ГБЦ

5. Выпускной клапан ГБЦ

6. Входное отверстие "горячей части" турбокомпрессора (она же — turbine)

7. Выход "горячей части" турбокомпрессора (она же — turbine)

***

Компоненты, составляющие типичную систему турбонаддува

* Воздушный фильтр (не показан), через который атмосферный воздух проходит прежде чем попасть в турбокомпрессор (1)

* Воздух который превышает величину плотности атмосферного воздуха (масса/еденица объема) является сжатым. (2)

* У большинства современных оснащенных турбонаддувом, есть промежуточный охладитель воздуха (интеркулер) (3), который охлаждает сжатый воздух, дабы далее увеличить его плотность и уменьшить склонность к детонации

* После прохождения через впускной коллектор (4), воздух входит в цилиндры двигателя, которые содержат фиксированный объем. Так как вошедший воздух большей плотности, каждый цилиндр может работать с большим массовым расходом воздуха. В свою очередь, более высокий массовый расход воздуха позволяет загнать в цилиндр больше топлива (с неизменным коэффициентом воздух/топливо — air/fuel). Воспламеняясь, воздушно — топливная смесь большего объема приводит к увеличению мощности, производимой данным размером, или по другому — объемом цилиндра

* Объем газов, полученный в результате сожжения топлива в цилиндре, выходит, в такте выхлопа, в выпускной коллектор (5)

* Газ высокой температуры на большей скорости направляется прямиком в "горячую часть" турбокомпрессора — турбине (6) и давят на крыльчатку. Турбина создает противодавление на двигателе, что означает что давление выхлопных газов двигателя выше чем атмосферное давление

* Снижение давления и температуры происходит во время прохождения через турбину (7), которая (как и все гениальное) просто использует бесплатную энергию выхлопных газов для привода компрессора и нагнетания давления

***

Компоненты, составляющие конструкцию турбокомпрессора

В дополнение нужно отметить что температура выхлопных газов бензиновых двигателей гораздо выше этого параметра у дизелей, а как следствие — турбокомпрессоры для дизельных двигателей, при схожей конструкции сделаны из более дешевых, но менее жаропрочных материалов. Так что использование дизельных турбокомпрессоров на бензиновом двигателе мы не рекомендуем — выкинете деньги…

***

Другие компоненты системы турбонаддува

Клапаны Блоуофф (Байпас)

Описание данных компонентов вы сможете найти в материале Как читать турбокарты

Вестгейты (Wastegates)

Вестгейт, также как и блоуофф, является средством управления наддувом, только со стороны выхлопа. Некоторые коммерческие дизельные системы турбонаддува вовсе обходятся без оного (т.н. система свободно плавающего турбонагнетателя). Однако, использование турбонаддува на бензиновых двигателях требует применения этого компонента.

Существуют две разновидности вестгейтов — внутренний и внешний. И тот и другой обеспечивают обход выхлопных газов мимо колеса турбины. Обход газов колеса, как вы уже понимаете, уменьшает мощность турбокомпрессора, позволяя турбине соответствовать мощности, требуемой для данного уровня наддува. Аналогично блоуоффам, вестгейты используют в своей конструкции силу пружины, для регулировки потока, проходящего в обход турбины.

Внутренние вестгейты встроены в корпус турбины и состоят из клапана "хлопушки", тяги, наконечника, и пневматического привода (актюатора).

Очень важно подсоединить актюатор исключительно к давлению наддува, т.к. механизм не работает с вакуумом и не может относиться к впускному коллектору.

Внешние вестгейты монтируются на специально изготавливаемом для них приливе на коллекторе. Преимущество внешнего вестгейта заключается в том, что обойдя турбину, поток воздуха может быть повторно включен в поток газов, идущий ниже по течению турбины. Это позволяет улучшить производительность турбины. Для гоночной техники, этот поток может быть выведен прямиком в атмосферу.

Втулки против шариковых подшипников

Втулки долгое время были основой для турбокомпрессоров. Они дешевы, практичны, но шарикоподшипник является новой вехой в постройке турбокомпрессоров и несет с собой существенное улучшение их характеристик.

Массовое появление турбин на шарикоподшипниках началось в результате участия группы Garrett Motorsports в нескольких гоночных сериях, где получило название "картридж подшипник"

Картридж — одинарная втулка, которая содержит ряд шарикоподшипников с каждой стороны, в то время как традиционная система подшипника содержит набор втулок и подшипник осевого давления

Втулки

Шарикоподшипники, картридж

Использование шарикоподшипников положительно сказывается на отклике турбины, что в свою очередь благоприятно сказывается на динамике автомобиля

С уважением,

Dr.Broman

www.drive2.ru

Устройство и принцип работы турбины

Турбина (турбокомпрессор) стала определяющим агрегатом в деле увеличения мощности моторов.

Что такое турбина и для чего она нужна?

Турбина — устройство в автомобиле, которое направлено на увеличение давления во впускном коллекторе автомобиля для того, чтобы обеспечить большее поступление воздуха, а значит и кислорода, в камеру сгорания.
Главное назначение турбины –  с ее помощью можно значительно увеличить мощность автомобиля. При увеличении давления во впускном коллекторе на 1 атмосферу в камеру сгорания попадет в два раза больше кислорода, а значит от небольшого турбового двигателя можно ожидать мощности как от атмосферника с объемом в два раза больше — грубая теоретическая арифметика не лишенная смысла…

Принцип работы турбокомпрессора

Принцип работы турбины несложен: горячие выхлопные газы через выпускной коллектор поступают в горячую часть турбины, проходят через крыльчатку горячей части приводя ее и вал на который она крепится в движение. На этом же вале закреплена крыльчатка самого компрессора в холодной части турбины, эта крыльчатка при вращении создает давление во впускном тракте и впускном коллекторе, что обеспечивает большее поступление воздуха в камеру сгорания.

Устройство турбины

 

Турбина состоит из двух улиток — улитки компрессора, через которую всасывается воздух и нагнетается во впускной коллектор, и улитки горячей части, через которую проходят выхлопные газы вращая колесо турбины и выходят в выхлопной тракт. Из крыльчатки компрессора и крыльчатки горячей части. Из шарикоподшипникового картриджа. Из корпуса, который соединяет обе улитки, держит подшипники, так же в корпусе находится охлаждающий контур.

В процессе работы турбина подвергается очень большим термодинамическим нагрузкам. В горячую часть турбины попадают выхлопные газы очень большой температуры 800-9000 °С, поэтому корпус турбины изготавливают из чугуна особого состава и особого способа отливки.

Частота вращения вала турбины достигает 200 000 об/мин и более, поэтому изготовление деталей требует большой точности, подгонки и балансировки. Помимо этого в турбине высокие требования к используемым смазочным материалам. В некоторых турбинах система смазки служит так е системой охлаждения подшипниковой части турбины.

Система охлаждения турбин

Система охлаждения турбин двигателя служит для улучшения теплоотдачи частей и механизмов турбокомпрессора.
Существует два  самых распространенных способа охлаждения деталей турбокомпрессора — охлаждение маслом, которое используется для смазки подшипников и комплексное охлаждение маслом и антифризом из общей системы охлаждения автомобилем.

Оба способа имеют ряд преимуществ и недостатков.
Охлаждение маслом.
Преимущества:

Недостатки:

Изначально, большинство серийных двигателей с турбонаддувом оснащались тубинами с масляным охлаждением. При прохождении через шарикоподшипниковую часть масло сильно нагревалось. Тогда, когда температура выходила за пределы нормального рабочего температурного диапазона, масло начинало закипать, коксоваться забивая каналы и ограничивая доступ смазки и охлаждения к подшипникам. Это приводило к быстрому износу, заклиниванию  и дорогостоящему ремонту. Причин у неполадки могло быть несколько — некачественной масло или не рекомендованное для данного типа двигателей, превышение рекомендованы сроков замены масла, неисправности в системе смазки двигателя и пр.

Комплексное охлаждение маслом и антифризом
Преимущества:

Недостатки:

При охлаждении турбины маслом и антифризом повышается эффективность и такие проблемы, как закипание и коксование масла, практически не встречаются. Но данная систем охлаждения имеет более сложную конструкцию т.к. имеет раздельные масляный контур и контур охлаждающей жидкости. Масло как и прежде служит для смазки подшипников и для охлаждения, а антифриз, который используется из общей системы охлаждения двигателя, не дает перегреться и закипеть маслу. Как следствие увеличивается стоимость самой конструкции.

При работе турбины воздух под действием компрессора сжимается и, как следствие, очень сильно греется, что приводит к нежелательным последствиям т.к. чем выше температура воздуха, тем меньшее количество кислорода в нем содержится — тем меньше эффективность наддува. С этим явлением призван бороться интеркулер — промежуточный охладитель воздуха.

Нагрев воздуха не единственная проблема, с которой пытаются справиться конструкторы при проектировании турбодвигателя. Насущной проблемой является инерционность турбины (лаг турбины, турбояма) — задержка в реакции мотора на открытие дроссельной заслонки. Турбина  выходит на пик своих возможностей при определенных оборотах двигателя, отсюда и появилось мнение, что турбина включается при определенных оборотах. Турбина в большинстве случаев, работает всегда, а значение оборотов при которых ее эффективность максимальная у каждого двигателя и у каждой турбины разные. В погоне за решением этой проблемы появились системы их двух турбин (твин-турбо, twin-turbo, би-турбо, biturbo), твин-скрол (twin-scroll) турбины, турбины с изменяемой геометрией сопла и изменяемым углом наклона крыльчатки (VGT),  изменяются материалы частей чтобы повысить прочность и увеличить вес (керамические лопатки крыльчатки) и пр.

Twin-turbo (твин-турбо) — система при которой используются две одинаковые турбины. Задача данной системы повысить объем или давление поступающего воздуха. Используется когда необходима максимальная мощность на высоких оборотах, например в драг-рейсинге. Такая система реализована на легендарном японском автомобиле Nissan Skyline Gt-R с двигателем rb26-dett.

Такая же система, но с маленькими одинаковыми турбинами позволяет добиться прироста мощности при небольших оборотах и держать наддув постоянным до красной зоны.

Biturbo (би-турбо) — систем а с двумя разными турбинами, которые соединены последовательно. Система устроена таким образом, что при низких оборотах работает маленькая турбина, обеспечивая хороший отклик на малых оборотах, при определенных условиях «включается» большая турбина и обеспечивает наддув при высоких оборотах. Это позволяет автомобилю уменьшить лаг двигателя и получить хороший прирост производительности во всем диапазоне работы двигателя.

Такая систем турбонаддува используется в автомобилях BMW biturbo.

Турбина с изменяемой геометрией (VGT) — система при которой лопатки крыльчатки в горячей части могут изменять угол наклона к потоку выхлопных газов.

При малых оборотах двигателя пропускное сечение прохода выхлопных газов становится более узкое и  «выхлоп» проходит с большей скоростью и большей отдачей энергии. Когда обороты двигателя увеличиваются проходное сечение становится шире и и уменьшается сопротивление движению выхлопных газов, но при этом достаточно энергии для создания необходимого давления компрессором. Чаще систему VGT используют на дизельных двигателях т.к. там меньше тепловые нагрузки, меньшая скорость вращения ротора турбины.

Twin-scroll ( двойная улитка) — система состоит из двойного контура движения выхлопных газов энергия которых вращает один ротор с крыльчаткой и компрессором. При этом существует два типа реализации когда выхлопные газы идут по обоим контурам сразу, при этом система работает как twin-turbo в одном корпусе — выхлопные газы делятся на два потока каждый из которых идут в свой контур горячей части раскручивая ротор турбины. Второй тип реализации работает на подобии системы biturbo — горячая часть имеет два контура с разной геометрией, при низких оборотах выхлопные газы направляются по меньшему контуру, который увеличивает скорость и энергию прохождения за счет небольшого диаметра, при повышении оборотов двигателя выхлопные газы двигаются по контуру диаметр которого больше — тем самым сохраняется рабочее давление в системе впуска и не создается запора на пути выхлопных газов. Это все регулируется клапанами, которые переключают поток из одного контура в другой.

pravauto.com

Турбина. Устройство и принцип действия. — Opel Calibra, 2.0 л., 1993 года на DRIVE2

Практически для каждого человека, интересующегося автомобилем и его устройством, важно понимание основных принципов работы турбонаддува. Тем более, что в настоящее время появляется все больше и больше серийных образцов автомобилей, оснащенных турбонагнетателями.

Даже Mercedes, традиционно преданный механическим нагнетателям, осознав плюсы турбонаддува, оснащает этой системой все больше и больше моделей, не говоря уже о BMW, Японских автопроизводителях!

Можно сколько угодно повторяться в статьях про турбины, но это все будет не более чем своя трактовка общеизвестных фактов. Я не буду изобретать велосипед, и в этой заметке буду отталкиваться от информации "из уст" одного из ведущих производителей турбин — фирмы Garrett, однако внесу немного дополнительной информации.

Итак,

***

Каков принцип работы системы турбонаддува?

Мощность двигателя пропорциональна объему воздуха и топлива, способного войти в цилиндры. При прочих равных, бОльшие двигатели потребляют бОльший поток воздуха и как результат, дают бОльшую мощность. Если мы хотим чтобы наш крошка-мотор работал также как двигатель-богатырь, либо если нам надо, чтобы уже не маленький двигатель выдавал еще бОльшую мощность, наша цель — "впихнуть" больше воздуха в цилиндр. Установив турбонагнетатель мы сможем резко увеличить характеристики двигателя.

Так каким-же образом турбонагнетатель "запихивает" больше воздуха в двигатель? Давайте для начала обратимся к схеме ниже:

1. Входное отверстие "холодной части" турбокомпрессора (она же — compressor)

2. Выход "холодной части" турбокомпрессора (она же — compressor)

3. Промежуточный охрадитель воздуха (интеркулер — intercooler)

4. Впускной клапан ГБЦ

5. Выпускной клапан ГБЦ

6. Входное отверстие "горячей части" турбокомпрессора (она же — turbine)

7. Выход "горячей части" турбокомпрессора (она же — turbine)

Схема работы турбо

омпоненты, составляющие типичную систему турбонаддува

* Воздушный фильтр (не показан), через который атмосферный воздух проходит прежде чем попасть в турбокомпрессор (1)

* Воздух который превышает величину плотности атмосферного воздуха (масса/еденица объема) является сжатым. (2)

* У большинства современных оснащенных турбонаддувом, есть промежуточный охладитель воздуха (интеркулер) (3), который охлаждает сжатый воздух, дабы далее увеличить его плотность и уменьшить склонность к детонации

* После прохождения через впускной коллектор (4), воздух входит в цилиндры двигателя, которые содержат фиксированный объем. Так как вошедший воздух большей плотности, каждый цилиндр может работать с большим массовым расходом воздуха. В свою очередь, более высокий массовый расход воздуха позволяет загнать в цилиндр больше топлива (с неизменным коэффициентом воздух/топливо — air/fuel). Воспламеняясь, воздушно — топливная смесь большего объема приводит к увеличению мощности, производимой данным размером, или по другому — объемом цилиндра

* Объем газов, полученный в результате сожжения топлива в цилиндре, выходит, в такте выхлопа, в выпускной коллектор (5)

* Газ высокой температуры на большей скорости направляется прямиком в "горячую часть" турбокомпрессора — турбине (6) и давят на крыльчатку. Турбина создает противодавление на двигателе, что означает что давление выхлопных газов двигателя выше чем атмосферное давление

* Снижение давления и температуры происходит во время прохождения через турбину (7), которая (как и все гениальное) просто использует бесплатную энергию выхлопных газов для привода компрессора и нагнетания давления

***

Компоненты, составляющие конструкцию турбокомпрессора

турбина в разрезе

В дополнение нужно отметить что температура выхлопных газов бензиновых двигателей гораздо выше этого параметра у дизелей, а как следствие — турбокомпрессоры для дизельных двигателей, при схожей конструкции сделаны из более дешевых, но менее жаропрочных материалов. Так что использование дизельных турбокомпрессоров на бензиновом двигателе мы не рекомендуем — выкинете деньги…

***

Другие компоненты системы турбонаддува

Клапаны Блоуофф (Байпас)

Описание данных компонентов вы сможете найти в материале Как читать турбокарты

Вестгейты (Wastegates)

Вестгейт, также как и блоуофф, является средством управления наддувом, только со стороны выхлопа. Некоторые коммерческие дизельные системы турбонаддува вовсе обходятся без оного (т.н. система свободно плавающего турбонагнетателя). Однако, использование турбонаддува на бензиновых двигателях требует применения этого компонента.

Существуют две разновидности вестгейтов — внутренний и внешний. И тот и другой обеспечивают обход выхлопных газов мимо колеса турбины. Обход газов колеса, как вы уже понимаете, уменьшает мощность турбокомпрессора, позволяя турбине соответствовать мощности, требуемой для данного уровня наддува. Аналогично блоуоффам, вестгейты используют в своей конструкции силу пружины, для регулировки потока, проходящего в обход турбины.

Внутренние вестгейты встроены в корпус турбины и состоят из клапана "хлопушки", тяги, наконечника, и пневматического привода (актюатора).

Очень важно подсоединить актюатор исключительно к давлению наддува, т.к. механизм не работает с вакуумом и не может относиться к впускному коллектору.

Внешние вестгейты монтируются на специально изготавливаемом для них приливе на коллекторе. Преимущество внешнего вестгейта заключается в том, что обойдя турбину, поток воздуха может быть повторно включен в поток газов, идущий ниже по течению турбины. Это позволяет улучшить производительность турбины. Для гоночной техники, этот поток может быть выведен прямиком в атмосферу.

***

Втулки против шариковых подшипников

Втулки долгое время были основой для турбокомпрессоров. Они дешевы, практичны, но шарикоподшипник является новой вехой в постройке турбокомпрессоров и несет с собой существенное улучшение их характеристик.

Массовое появление турбин на шарикоподшипниках началось в результате участия группы Garrett Motorsports в нескольких гоночных сериях, где получило название "картридж подшипник"

Картридж — одинарная втулка, которая содержит ряд шарикоподшипников с каждой стороны, в то время как традиционная система подшипника содержит набор втулок и подшипник осевого давления

Втулки

Шарикоподшипники, картридж

спользование шарикоподшипников положительно сказывается на отклике турбины, что в свою очередь благоприятно сказывается на динамике автомобиля
До новых встреч! )

www.drive2.ru

Конструкция турбины | ТурбоМастер

Дата публикации: 2015-04-10

Содержание

Конструкция и основные функции турбокомпрессора (ТК) не претерпели принципиальных изменений с момента его изобретения швейцарским инженером Альфредом Бюхи, предложившим идею турбонаддува в 1905 году. Турбокомпрессор, как и следует из его названия, состоит из турбины и компрессора, соединенных общим валом. Турбина, приводимая в действие отработавшими газами (ОГ), передает энергию вращения на компрессор.

В автотехнике наиболее популярны центробежные компрессоры и радиально-осевые (центростремительные) турбины, которые и являются основой большинства современных ТК.

Компрессор

Входящий в состав турбокомпрессора центробежный компрессор состоит из трех основных компонентов: колеса компрессора, диффузора и корпуса. Вращающимся колесом поток воздуха всасывается в осевом направлении, разгоняется до большой скорости и затем вытесняется в радиальном направлении. Диффузор замедляет высокоскоростной поток воздуха практически без потерь, так что и его давление, и температура возрастают. Диффузор сформирован опорным диском компрессора и частью спирального корпуса (улитки). Последний, в свою очередь, собирает истекающий поток и еще больше замедляет его до выхода из компрессора.

Основные компоненты компрессора: крыльчатка (колесо компрессора), диффузор и спиралевидный корпус. Диффузор - узкий канал, сформированный опорным диском компрессора и частью корпуса.

Характеристики компрессора

Рабочие характеристики компрессора определяются картой режимов, которая отражает зависимость между степенью повышения давления и объемным или массовым расходом. Для удобства сравнения объемный и массовый расход компрессора соотносят со стандартными условиями на входе в компрессор. Рабочая область карты для центробежных компрессоров ограничивается зонами неустойчивых режимов (слева – линией помпажа, справа – линией насыщения), а также максимально допустимой частотой вращения. Компрессор для автомобильного применения должен устойчиво работать при изменении расхода воздуха в большом диапазоне. Поэтому он должен иметь карту режимов с широкой рабочей областью.

Область помпажа

Автомобильный турбокомпрессор - агрегат, состоящий из центробежного компрессора и радиально-осевой турбины, соединенных общим валом.

Карта режимов слева ограничена линией помпажа. По сути, помпаж – это срыв потока воздуха на входе в компрессор. При слишком малом объемном расходе и слишком высокой степени повышения давления поток отрывается от входных плоскостей лопаток и нормальный процесс нагнетания нарушается. Поток воздуха через компрессор реверсируется до тех пор пока перепад давления не стабилизируется. Направление потока вновь становится нормальным, давление наддува восстанавливается и цикл повторяется. Эта нестабильность потока продолжается с фиксированной частотой. Возникающий из-за этого акустический шум известен как помпаж.

Линию помпажа смещают в область меньших объемных расходов путем применения лопаток с загнутыми назад кромками, так что рабочий диапазон расходов компрессора увеличивается. Обратный изгиб лопаток приводит к образованию длинных, постепенно расширяющихся каналов. Они замедляют скорость потока и производят меньше пограничных расслоений, чем в случае лопаток с радиальными кромками. "Улитка" собирает высокоскоростной поток и замедляет его, что приводит к росту температуры и давления.

Ширина диффузора также оказывает позитивный эффект на расположение линии помпажа. В общем случае компрессоры с диффузорами узкой конфигурации имеют более стабильную карту режимов.

Линия насыщения

Максимальный объемный расход центробежного компрессора обычно ограничивается величиной сечения на входе. Когда скорость потока на входе в колесо достигает скорости звука, дальнейшее увеличение расхода становится невозможным. Линию насыщения можно определить по круто снижающимся кривым максимальной частоты вращения компрессора в правой части карты режимов. Входное сечение компрессора может быть увеличено, а линия насыщения сдвинута в область больших расходов путем смещения передней кромки каждой второй лопатки (так называемые сплиттерные лопатки).

Когда увеличивается входной диаметр компрессора, возрастает так называемое хаб отношение ( hub ratio) - отношение между входным диаметром и диаметром колеса. Это приводит к росту максимального расхода. Из-за требований к прочности деталей и по соображениям аэродинамики увеличение хаб отношения возможно примерно до 0,8. По той же причине такие большие хаб отношения позволяют получить только относительно низкие значения степени повышения давления, которые требуются в пассажирских автомобилях.

Утоньшение лопаток и уменьшение их количества увеличивает площадь поперечного сечения на входе в колесо, так что линия насыщения отодвигается в сторону больших объемных расходов воздуха. Минимальная толщина лопаток лимитируется технологией литья и прочностными требованиями. Однако когда количество лопаток сокращается, степень повышения давления также уменьшается.

Таким образом, компрессорные колеса турбокомпрессоров пассажирских автомобилей характеризуются высоким хаб отношением и уменьшенным количеством тонких лопаток с сильным обратным загибом. Компрессор - "холодная" часть ТК, функция которой - повысить давление, а, вместе с этим, и плотность воздуха, поступающего в двигатель.

Корпуса компрессоров для коммерческих дизелей, где требуются и высокая степень повышения давления, и широкая карта режимов, часто изготавливают с рециркуляционными каналами. По каналам часть всасываемого воздуха возвращается из компрессора в основной поток на входе в него. Благодаря возникающей рециркуляции течение стабилизируется и линия помпажа смещается в сторону меньших объемных расходов. Более того, тем же путем воздух можно подвести к колесу в зоне позади ограничивающего входного сечения, так что линия насыщения сдвигается в область больших расходов.

Предельная частота вращения

Частота вращения колеса компрессора ограничивается нагрузками, которые испытывают его компоненты. Максимальная частота вращения определяется допустимой скоростью кончиков лопаток и наружным диаметром колеса. Допустимая скорость кромок лопаток обычно составляет около 520 м/с. Если не принимаются никакие меры для снижения нагрузок, увеличение скорости оборачивается сокращением срока службы.

Турбина

Турбина турбокомпрессора (ТК) состоит из турбинного колеса и корпуса. Она преобразует энергию отработавших газов (ОГ) в механическую энергию для привода компрессора. Поток ОГ несет энергию в форме высокого давления и температуры. После прохождения через турбину энергия газов (давление и температура) уменьшается. Перепад давления и температуры газов между входом и выходом из турбины преобразуется в кинетическую энергию вращения турбинного колеса.

Существуют два основных вида турбин: с осевым и радиальным потоком. В случае колес диаметром до 160 мм используются только радиальные турбины. КПД маленьких радиальных турбин выше, а стоимость изготовления при больших объемах производства существенно ниже, чем осевых. Поэтому они обычно применяются в пассажирских и коммерческих дизелях, а также в индустриальных силовых агрегатах.

В улитке радиальных (центростремительных) турбин давление ОГ преобразуется в кинетическую энергию и они с постоянной скоростью направляются с периферии на турбинное колесо. Трансформация кинетической энергии в мощность на валу происходит в турбинном колесе. Оно спроектировано так, чтобы почти вся кинетическая энергия газа преобразовалась к моменту, когда он выходит из крыльчатки.

Рабочие характеристики

Устройство крыльчатки компрессора. Сплиттерные лопатки увеличивают входное сечение компрессора. Обратный изгиб лопаток на выходе из компрессорного колеса - способ борьбы с помпажем.

Мощность турбины возрастает по мере роста перепада давления между ее входом и выходом, то есть, когда перед турбиной скапливается больше отработавших газов (ОГ). Это происходит в результате повышения оборотов двигателя или увеличения температуры газов вследствие их большей энергии.

Поведение турбинной характеристики определяется относительным сечением проточной части. Чем меньше относительное сечение, тем больше газов скапливается на входе в турбину (повышается давление перед турбиной). В результате увеличения перепада давления производительность турбины возрастает. Таким образом, с уменьшением относительного сечения давление наддува увеличивается.

Относительное сечение турбины можно легко варьировать путем замены ее корпуса. Большинство производителей турбокомпрессоров (ТК) для каждого типа турбины предлагает корпуса разных размеров. Это позволяет в широких пределах изменять давление наддува путем подбора нужного относительного сечения проточной части турбинного корпуса.

Помимо относительного сечения на массовый расход газов через турбину также оказывает влияние площадь отверстия на выходе из колеса. Механическая обработка литого турбинного колеса по контуру - трим (trim) - дает возможность регулировать площадь сечения а, следовательно, и давление наддува. Увеличение контура колеса выливается в большее проходное сечение для потока. В рамках одной серии ТК производители предлагают колеса турбин с разным тримом, которые изготовлены из одних литьевых заготовок.

В турбинах с изменяемой геометрией проходное сечение потока между каналом улитки и выходом из колеса варьируется. На входе в турбинное колесо оно изменяется с помощью подвижных управляемых лопаток или скользящего кольца, частично перекрывающего сечение.

На практике рабочие характеристики турбины ТК описываются картами, показывающими зависимость параметров потока ОГ от перепада давления на турбине. На карте турбины показаны кривые массового расхода и КПД турбины для разных частот вращения. Для упрощения карты зависимости расхода и эффективности могут быть представлены в виде усредненных кривых.

Материалы турбин

Поскольку при работе двигателя и после его останова турбина подвергается действию очень высоких температур, колесо и корпус турбины изготавливаются из материалов, обладающих высокой жаропрочностью. В общем случае крыльчатки турбин делают из сплавов на основе никеля, таких как Inconel 713 и GMR 235. Основные компоненты этих сплавов – никель и хром. В то время как GMR 235 работает в условиях температуры отработавших газов (ОГ) на входе в турбину до 850°С, Inconel 713 (73% никеля, 13% хрома) применяется при температурах свыше 1000°С.

Выбор материала для корпуса турбины также зависит от температуры. Сегодня серый чугун GGG40 со сферическим графитом (до 680°С) применяется реже. Для большинства дизельных агрегатов используется кремниево-молибденовый чугун GGG SiMo 5.1 (до 760°С) или GGV SiMo 4.5 0.6 (до 850 °С). Реже для температур ОГ до 850 °С используется высоколегированный никель-хромовый чугун GGG NiCrSi 20 2 2 (Niresist D2).

В большинстве турбокомпрессоров для бензиновых двигателей с температурами ОГ до 970°С применяется сплав GGG NiCrSi 35 5 2 (Niresist D5). Для самых высоких температур до 1050 °С, что потребуется в бензиновых двигателях ближайшего будущего, используется жаростойкая литьевая аустенитная сталь.

Турбины с двойным входом

Давление истекающих из двигателя отработавших газов (ОГ) не постоянное - оно пульсирует в соответствии с чередованием тактов выпуска в разных цилиндрах. Импульсные системы наддува используют пульсации давления ОГ, позволяющие кратковременно увеличить перепад давления на турбине. За счет роста перепада давления увеличивается КПД турбины, улучшая ее работу до тех пор пока через нее не пойдет большой, эффективный поток газов. В результате более полного использования энергии ОГ улучшаются характеристики давления наддува и, соответственно, поведение кривой крутящего момента, особенно на низких оборотах двигателя.

Для предотвращения взаимного влияния цилиндров при разных тактах впуска-выпуска они делятся на две независимые группы. Каждая группа объединяется в свой выпускной коллектор, который транслирует ОГ непосредственно на вход в турбину. В этом случае турбина с двойным входом позволяет утилизировать ОГ из двух групп цилиндров отдельно. В двигателях пассажирских автомобилей чаще используются неразделенные коллекторы и турбины с «однозаходным» корпусом. Это позволяет сделать коллектор компактнее и расположить турбину ближе к головке блока. Поскольку здесь сечение и длина газоподводящих каналов меньше, преимущества импульсного наддува нивелируются.

И все же в отдельных случаях турбины с двойным входом применяются в бензиновых моторах пассажирских автомобилей. Их преимущество - хорошая характеристика крутящего момента при низком давлении ОГ. В то же время им свойственны и недостатки – высокая термическая нагрузка разделяющей перегородки и дорогое производство маленьких корпусов с интегрированным байпасом, особенно, если в качестве материала нужно использовать литьевую сталь из-за больших температур.

Отклик

Для двигателей пассажирских автомобилей жизненно важную роль играют инерционные характеристики турбокомпрессора (ТК). Замедленная реакция на изменение положения педали акселератора, которую также называют «турбояма», часто воспринимается как фактор, снижающий управляемость автомобиля. В последние годы этот негативный эффект компенсирован применением ТК меньшего размера. У них меньше сечение проточной части и ниже инерция ротора как результат применения колес меньшего диаметра. Таким образом, при увеличении частоты вращения турбокомпрессора приходится раскручивать ротор меньшей массы. Момент инерции турбинного колеса также может быть снижен путем удаления сегментов опорного диска между лопатками. В еще большей степени динамические характеристики ТК могут быть улучшены применением турбин с изменяемой геометрией проточной части.

Оптимальные условия для потока и низкие потери тепла достигаются в интегрированных системах наддува с отлитыми заодно выпускным коллектором и корпусом турбины, что оборачивается улучшенными характеристиками отклика. Прочие аргументы за применение таких систем – сокращение веса до 1 кг, а также увеличение свободного пространства между двигателем и пассажирской кабиной, что часто жизненно необходимо по соображениям безопасности.

Керамические колеса турбин

В сравнении с металлическими колесами керамические турбинные колеса существенно легче, что улучшает характеристики отклика (чувствительность) турбокомпрессора. Современные керамические материалы позволили разработать такие колеса, пригодные для массового производства. Однако керамические материалы очень хрупкие и могут быть легко разрушены при попадании посторонних частиц. Более того, лопатки таких турбин толще и поэтому их эффективность ниже, так что они редко используются в автотехнике.

Алюминид титана имеет такую же плотность как керамика. Этот материал сравнительно менее подвержен разрушению, а лопатки такие же тонкие как металлические. Его недостаток – низкая температурная стойкость (максимум 700°С).

Типовая карта режимов компрессора. Рабочая область карты режимов ограничена линиями помпажа, насыщения и предельно допустимой частоты вращения.

Водоохлаждаемые корпуса

При разработке турбокомпрессоров (ТК) также должны учитываться аспекты безопасности. Например, в судовых моторных отсеках следует избегать горячих поверхностей из-за опасности пожара. Поэтому корпуса турбин ТК для морского применения изготавливаются с водяным охлаждением или с покрытием изолирующими материалами.

Система управления

Тяговые характеристики современных турбодвигателей должны отвечать таким же высоким требованиям, как и характеристики атмосферных моторов с идентичными мощностными параметрами. Это означает, что полное давление наддува должно быть доступно, начиная с минимально возможных частот вращения двигателя. Это, в свою очередь, может быть достигнуто только путем управления турбокомпрессором на турбинной стороне.

Байпасное регулирование на турбинной стороне

Установка байпасного клапана в турбинной части турбокомпрессора (ТК) – самый простой способ контроля давления наддува. Геометрические параметры турбины выбирают таким образом, чтобы обеспечить характеристику крутящего момента на низких оборотах, необходимую для достижения заданных динамических показателей автомобиля. При такой конструкции ТК уже незадолго до достижения максимального крутящего момента на турбину начинает поступать избыточное количество отработавших газов. Таким образом, как только номинальное давление наддува достигнуто, избыток отработавших газов направляется по байпасному каналу в обход турбинного колеса. Клапан «вейстгейт», который открывает и закрывает байпас, обычно приводится в действие пневматической камерой с подпружиненной диафрагмой, реагирующей на давление наддува. Так по мере дальнейшего увеличения оборотов двигателя давление наддува остается на неизменном уровне.

В этом, очень экономичном, решении на диафрагму камеры управления, предварительно нагруженную спиральной пружиной, воздействует давление наддува. Как только давление наддува преодолеет силу предварительного сжатия пружины, шток через рычаг открывает тарелку байпасного клапана и ОГ начинают перетекать вокруг турбины в систему выпуска.

В современных бензиновых и дизельных двигателях все чаще применяются электронно управляемые системы контроля наддувочного давления. В сравнении с чисто пневматическим регулированием, которое действует только как ограничитель давления на полной нагрузке, гибкое управление позволяет устанавливать оптимальное давление наддува в режимах частичной нагрузки. Электронное регулирование работает в соответствии с различными параметрами, такими как температура наддувочного воздуха, качество топлива и параметры опережения впрыска (зажигания). Также становится возможным кратковременный «перенаддув» при интенсивном ускорении.

Механический привод байпасной заслонки действует так же как и в описанном выше случае. Вместо полного давления наддува на диафрагму камеры управления подается модулированное управляющее давление. Оно меньше полного давления наддува и вырабатывается так называемым пропорциональным клапаном. Этим достигается то, что на диафрагму воздействует комбинация давления наддува и давления на выходе из компрессора в изменяющейся пропорции. Пропорциональный клапан управляется электроникой двигателя и срабатывает с частотой от 10 до 15 Гц. В сравнение с обычной системой управления усилие предварительного сжатия пружины существенно ниже, что позволяет осуществлять регулирование также и на режимах частичной нагрузки, то есть, при меньшем давлении наддува.

В электронных системах управления турбокомпрессоров дизельных двигателей пневмокамеры регулируются вакуумом.

Турбины с изменяемой геометрией

Байпасные системы регулирования управляют мощностью турбины, направляя часть отработавших газов (ОГ) в обход нее. Таким образом, «дармовая» энергия газов используется не полностью. Турбины с изменяемой геометрией позволяют варьировать сечение проточной части турбины в зависимости от режима работы двигателя. Это дает возможность полностью утилизировать энергию ОГ, оптимизируя конфигурацию канала, по которому ОГ попадают на турбинное колесо, для данного режима двигателя. Как результат, эффективность турбокомпрессора (ТК) и, соответственно, двигателя выше тех, что удается достичь при байпасном регулировании.

Сегодня турбины с РСА в виде подвижных направляющих лопаток (VNT, VTG, VGT) – самое передовое решение для современных легковых дизельных автомобилей. В результате непрерывной адаптации проходного сечения турбинного канала к рабочему режиму двигателя сокращаются потребление топлива и вредные выбросы. Высокий крутящий момент уже на низких оборотах и адекватная стратегия управления обеспечивают существенное улучшение динамических характеристик.

Подвижные направляющие лопатки между корпусом улитки и турбинным колесом влияют на протекание процесса восстановления давления и, таким образом, на выходные характеристики турбины. Это позволяет варьировать поток газов через турбину в диапазоне 1:3 при хороших уровнях эффективности. На низких оборотах сечение проточной части турбины уменьшается путем закрытия направляющих лопаток. Давление наддува и, следовательно, крутящий момент двигателя возрастают как результат увеличения перепада давления на входе и выходе из турбины. С повышением оборотов двигателя управляемые лопатки постепенно открываются. Требуемое давление наддува достигается при низком перепаде давления на турбине - так достигается сокращение расхода топлива. При ускорении машины с низкой скорости (оборотов двигателя) управляемые лопатки закрываются для получения максимальной энергии от ОГ. По мере увеличения скорости лопатки открываются и адаптируются к соответствующему рабочему режиму.

В настоящее время управление лопатками преимущественно электронное, с помощью вакуумно-регулируемой камеры управления и пропорционального клапана. В будущем все чаще будут применяться электрические приводы с положительной обратной связью, позволяющие реализовать точное и чрезвычайно гибкое управление давлением наддува.

Температура ОГ современных высокоэффективных дизельных двигателей может достигать 830°С. Точная и надежная работа управляющих лопаток в потоке горячих газов предъявляет высокие требования к материалам и точности допусков в конструкции турбины. Независимо от типоразмера турбокомпрессора направляющие лопатки должны иметь минимальные зазоры для обеспечения надежной работы в течение всего срока службы автомобиля. С уменьшением размера ТК относительные потери потока через турбину возрастают и ее эффективность падает. Поэтому цель многих разработок – отодвинуть эти ограничения области применения технологии VTG как можно дальше в сторону ТК малых размеров.

Альтернативное решение – турбины с регулирующим механизмом в виде подвижного (скользящего) кольца (VST-variable sliding turbine). Простота конструкции и исполнение многих функций небольшим количеством компонентов – преимущества для маленьких турбин или там, где требуется работа в условиях высоких температур ОГ. Это особенно применимо в компактных дизельных двигателях с рабочим объемом менее 1,4 л. Преимущества – высокая эффективность, низкая цена и сокращение установочных размеров. Для бензиновых моторов с высокой температурой ОГ технология VST – надежная возможность управления давлением наддува путем изменения геометрии проточной части турбины.

Прочный механизм VST противостоит высоким температурам ОГ значительно лучше, чем VTG с направляющими лопатками. Байпас, который для бензиновых двигателей необходим даже в ТК с изменяемой геометрией из-за большого диапазона изменения расхода, интегрирован в механизм управления.

Корпус турбины аналогичен турбинам с двойной улиткой (с двухканальным направляющим аппаратом). Перегородка, разделяющая каналы, не выходит на впускной фланец, а начинается внутри улитки. На низких оборотах двигателя открыт только один канал. Второй канал, который закрыт скользящим кольцом, постепенно открывается по мере увеличения оборотов. Затем скользящее кольцо приоткрывает и байпасный канал, ведущий от входа в турбину по внешнему контуру скользящего кольца к выходу из турбины. Это дополнительно увеличивает расход газов через турбину. Для регулирования сечения проточной части и открытия байпасного канала требуется всего один управляющий механизм. Могут быть использованы как пневматический, так и электронный приводы.

Узел подшипников

Ротор турбокомпрессора (ТК) вращается с частотой до 300 000 мин -1. Срок службы ТК должен соответствовать ресурсу двигателя, который может составлять 1 000 000 км пробега для коммерческого автомобиля. Только специально разработанные для ТК подшипники скольжения могут соответствовать таким жестким требованиям при приемлемой стоимости.

Опорные подшипники

В подшипнике скольжения вал вращается практически без трения на масляной пленке внутри втулки подшипника.

Масло подается в турбокомпрессор (ТК) от системы смазки двигателя. Подшипниковый узел спроектирован так, что между неподвижным корпусом и вращающимся валом расположены «плавающие» бронзовые подшипниковые втулки. Они вращаются с частотой, вдвое меньшей частоты вращения вала. Это позволяет высокоскоростным подшипникам адаптироваться таким образом, что на любых режимах работы ТК нет прямого контакта «металл-металл» между валом и подшипниками.

Кроме функции смазки масляная пленка в зазорах подшипника играет роль демпфера, который способствует стабилизации вала и турбинного колеса. Гидродинамическая несущая способность пленки и демпфирующие характеристики подшипника оптимизируются величиной зазоров. Таким образом, толщина смазывающей пленки для внутренних зазоров выбирается исходя из нагрузки на подшипник, в то время как толщина внешних зазоров определяется с учетом демпфирования подшипника. Зазоры в подшипниках составляют несколько сотых долей миллиметра. Увеличение зазоров приведет к более мягкому демпфированию и, одновременно, к снижению несущей способности подшипника.

Так называемый патрон - специальный вид опорного подшипника скольжения. Вал вращается в неподвижной целиковой втулке, снаружи которой прокачивается масло. Внешний зазор выбирается исключительно из условия демпфирования подшипника, так как патрон не проворачивается. Вытекающая из этого меньшая ширина подшипника позволяет создать более компактный ТК.

Упорный подшипник

Ни один из рассмотренных типов опорных подшипников, ни свободно плавающие втулки, ни фиксированный плавающий патрон, не воспринимают нагрузки в осевом направлении. Поскольку газы воздействуют на компрессорное и турбинное колеса в осевом направлении с разной силой, ротор турбокомпрессора (ТК) испытывает осевую нагрузку. Она воспринимается упорным подшипником скольжения с конической плоскостью (рабочей поверхностью). Два маленьких диска, закрепленных на валу, служат контактными поверхностями. Упорный подшипник фиксируется в центральном корпусе подшипников. Маслоотражающая пластина предотвращает попадание масла в зону уплотнения вала.

Слив масла

Масло подается в турбокомпрессор (ТК) при давлении примерно 4 бар. Поскольку масло сливается из турбины при меньшем давлении (самотеком), диаметр трубки для слива значительно больше, чем маслоподающей трубки. Проток масла через корпус подшипников должен быть по возможности вертикальным, сверху вниз. Сливная трубка должна выходить в картер выше уровня масла. Любое препятствие на пути слива масла оборачивается увеличением противодавления в корпусе подшипников. В этом случае масло начинает просачиваться сквозь уплотнительные кольца в компрессор и турбину.

Уплотнения

Центральный корпус подшипников должен быть уплотнен от прорыва в него горячих отработавших газов из турбины и от утечек масла из корпуса. Для этого в канавки на валу ротора, со стороны компрессора и турбины установлены разрезные кольца, аналогичные поршневым. Кольца не вращаются, а неподвижно расклинены в центральном корпусе. Это бесконтактное уплотнение, один из видов лабиринтного уплотнения. Благодаря многочисленным резким изменениям направления движения потока оно затрудняет утечку масла и пропускает в картер лишь небольшое количество отработавших газов.

Тепловая нагрузка на подшипники

Учитывая небольшое расстояние между центральным корпусом и горячим корпусом турбины, тепло может проникать в центральный корпус и нагревать масло до температуры коксования. Тогда масляный кокс мог бы осаждаться в зазорах и на поверхностях, засорять масляные каналы и нарушать работу подшипников и уплотнений. Большое количество углеводородных отложений может вызвать дефицит смазки и граничное трение, приводящие к ускоренному износу системы подшипников.

Тепловой экран и охлаждение разбрызгиванием масла<

Тепловой экран, расположенный позади опорного диска турбинного колеса, предотвращает контакт горячих отработавших газов с центральным корпусом. В некоторых конструкциях при работе двигателя масло распыляется на вал ротора через маленькое распылительное отверстие в опоре подшипника с турбинной стороны, охлаждая вал и уменьшая риск коксования.

Наивысшие температуры в центральном корпусе достигаются вскоре после останова двигателя. Горячий турбинный корпус нагревает систему подшипников, которая больше не охлаждается моторным маслом.

Термическая развязка

В расчете на термическую развязку правой подшипниковой опоры передача тепла от корпуса турбины к системе подшипников сокращается даже после того как двигатель был заглушен. Для этого систему подшипников располагают ниже точки подачи масла, так же как силовой агрегат размещают под крылом самолета. Правая подшипниковая опора больше не контактирует с горячей стенкой центрального корпуса, значит, передача тепла к системе подшипников ограничивается.

Водяное охлаждение

Бензиновые двигатели, у которых температура отработавших газов на 200-300°С выше чем у дизелей, обычно оснащаются турбокомпрессорами с охлаждаемыми центральными корпусами. При работе двигателя центральный корпус интегрируется в его контур охлаждения. После выключения двигателя остаточное тепло снимается посредством малого кольца циркуляции, которое задействуется электрическим насосом с термостатом.

Рециркуляционный клапан

В бензиновых турбодвигателях дроссельная заслонка, которая управляет нагрузкой двигателя, располагается после компрессора, во впускном коллекторе. В момент внезапного сброса газа заслонка закрывается, а компрессор из-за своей инерционности продолжает нагнетать воздух в почти замкнутый объем. Вследствие этого начался бы помпаж компрессора. Частота вращения турбокомпрессора (ТК) быстро упала бы.

Начиная с определенного давления, открывается подпружиненный клапан и направляет воздух обратно на вход в компрессор, ограничивая рост давления и исключая помпаж. Частота вращения ТК остается высокой, и давление наддува появится, как только будет задействован акселератор.

turbomaster.ru

vovka75rus › Блог › УСТРОЙСТВО, НАЗНАЧЕНИЕ И РАБОТА ТУРБОКОМПРЕССОРА. ТУРБИНА С ИЗМЕНЯЕМОЙ ГЕОМЕТРИЕЙ

Мощность, развиваемая двигателем внутреннего сгорания, зависит от количества топлива и воздуха, поступающего в двигатель. Мощность двигателя возможно повысить за счет увеличения объема этих составляющих.
Но увеличение подачи топлива бессмысленно, если не увеличивается поступление воздуха, необходимого для его сгорания. Поэтому воздух, поступающий в цилиндры двигателя, приходится сжимать. Система принудительной подачи воздуха может работать, используя энергию отработанных газов или с применением механического привода.
Турбокомпрессор или турбонагнетатель — устройство, предназначенное для нагнетания воздуха в двигатель с помощью энергии выхлопных газов. Основные части турбокомпрессора — турбина и центробежный насос, которые связывает между собой общая жесткая ось. Эти элементы вращаются со скоростью — около 100.000 об/мин, приводя в действие компрессор.
УСТРОЙСТВО ТУРБОКОМПРЕССОРА

схема турбокомпрессора
Устройство турбокомпрессора (рис.1):
1 — корпус компрессора; 2 — вал ротора; 3 — корпус турбины; 4 — турбинное колесо; 5 — уплотнительные кольца; 6 — подшипники скольжения; 7 — корпус подшипников; 8 — компрессорное колесо.
Турбинное колесо вращается в корпусе, имеющем специальную форму. Оно выполняет функцию передачи энергии отработавших газов компрессору. Турбинное колесо и корпус турбины изготавливают из жаропрочных материалов (керамика, сплавы).
Компрессорное колесо засасывает воздух, сжимает его и затем нагнетает его в цилиндры двигателя. Оно также находится в специальном корпусе.
Компрессорное и турбинное колеса установлены на валу ротора. Вращение вала происходит в подшипниках скольжения. Используются подшипники плавающего типа, то есть зазор имеют со стороны корпуса и вала. Моторное масло для смазки подшипников поступает через каналы в корпусе подшипников. Для герметизации на валу устанавливаются уплотнительные кольца.
Для лучшего охлаждения турбонагнетателей в некоторых бензиновых двигателях применяется дополнительное жидкостное охлаждение.
Для охлаждения сжимаемого воздуха предназначен интеркулер — радиатор жидкостного или воздушного типа. За счет охлаждения увеличивается плотность и соответственно давление воздуха.
В управлении системой турбонаддува основным элементом является регулятор давления. Это перепускной клапан, который ограничивает поток отработавших газов, перенаправляя часть его мимо турбинного колеса, обеспечивая нормальное давление наддува.
ПРИНЦИП РАБОТЫ

В своей работе турбокомпрессор использует энергию отработавших газов. Эта энергия вращает турбинное колесо. Затем это вращение через вал ротора передается компрессорному колесу. Компрессорное колесо нагнетает воздух в систему, предварительно сжав его. Охлажденный в интеркулере воздух подается в цилиндры двигателя.
работа турбины
Принцип работы турбокомпрессора
Хотя у турбокомпрессора нет жесткой связи с валом двигателя, эффективность работы турбонаддува зависит от частоты его вращения. Чем больше число оборотов двигателя, тем сильнее поток отработавших газов. Соответственно увеличивается скорость вращения турбины и количество поступающего в цилиндры воздуха.
При работе системы турбонаддува возникают некоторые негативные моменты.
Задерживается увеличение мощности при резком надавливании на педаль газа («турбояма»).
После выхода из «турбоямы» резко повышается давление наддува («турбоподхват»).
Явление «турбоямы» обусловлено инерционностью системы. Это влечет за собой несоответствие между производительностью турбокомпрессора и требуемой мощностью двигателя. Для решения этой проблемы существуют следующие способы:
использование турбины с изменяемой геометрией;
применение двух параллельных или последовательных компрессоров;
комбинированный наддув.
Турбина с изменяемой геометрией оптимизирует поток отработавших газов, изменяя площадь входного канала. Широко применяется в дизельных двигателях.
VNT-турбина
Турбина с изменяемой геометрией (рис.3):
1 — направляющие лопатки; 2 — кольцо; 3 — рычаг; 4 — тяга вакуумного привода; 5 — турбинное колесо.
Параллельно работающие турбокомпрессоры применяют для мощных V-образных двигателей (по одному на ряд цилиндров). Эта схема помогает решить проблему за счет того, что у двух маленьких турбин инерция меньше, чем у одной большой.
Установка 2-х последовательных турбин позволяет достичь максимальной производительности, используя разные компрессоры при разных оборотах двигателя.
При комбинированном наддуве применяется и механический, и турбонаддув. При работе двигателя на низких оборотах работает механический нагнетатель. При увеличении оборотов включается турбокомпрессор, а механический нагнетатель останавливается.
ПРЕИМУЩЕСТВА И НЕДОСТАТКИ ПРИМЕНЕНИЯ ТУРБОНАДДУВА

1. Турбокомпрессор широко используется ввиду простоты конструкции и хороших эксплуатационных параметров. Турбонаддув позволяет увеличить мощность двигателя на 20-35%. Двигатель, вырабатывая повышенные крутящие моменты на средних и высоких оборотах, увеличивает скорость и экономичность автомобиля.
2. Турбокомпрессор в большинстве случаев не может быть причиной неисправностей двигателя, так как его работа зависит от работоспособности газораспределительной, воздушной и топливной систем.
3. Двигатель с турбокомпрессором имеет меньший выброс вредных газов в атмосферу, так как вырабатываются дополнительные выхлопные газы в двигатель. У сгораемого топлива становится меньше отходов.
4. Происходит экономия топлива на 5-20%. В небольших двигателях энергия сжигаемого топлива используется эффективней, увеличивается КПД.
5. На высокогорных дорогах такие двигатели работают более стабильно и с меньшими потерями мощности, чем их атмосферные аналоги.
6. Турбокомпрессор сам по себе является глушителем шума в системе выпуска.
Как работает турбина — видео:

О НЕДОСТАТКАХ

У турбированных двигателей кроме возникновения явлений «турбояма» и «турбоподхват» есть и другие недостатки.
Обслуживание их дороже в сравнении с «классическими». При эксплуатации приходится применять моторное масло специального назначения — его приходится регулярно менять. Двигатель с турбокомпрессором перед пуском должен несколько минут проработать на холостых оборотах. Также сразу не рекомендуется глушить мотор до остывания турбины.

www.drive2.ru

Турбина состав системы и принцип работы — DRIVE2

Состав системы

Кроме турбокомпрессора и интеркулера в систему входят: регулировочный клапан (wastegate) (для поддержания заданного давления в системе и сброса давления в приёмную трубу), перепускной клапан (bypass valve — для отвода наддувочного воздуха обратно во впускные патрубки до турбины в случае закрытия дроссельной заслонки) и/или «стравливающий» клапан (blow-off valve — для сброса наддувочного воздуха в атмосферу с характерным звуком, в случае закрытия дроссельной заслонки, при условии отсутствия датчика массового расхода воздуха), выпускной коллектор, совместимый с турбокомпрессором, а также герметичные патрубки: воздушные для подачи воздуха во впуск, масляные для охлаждения и смазки турбокомпрессора.

Принцип работы

Принцип работы основан на использовании энергии отработавших газов. Поток выхлопных газов попадает на крыльчатку турбины (закреплённой на валу), тем самым раскручивая её и находящиеся на одном валу с нею лопасти компрессора, нагнетающего воздух в цилиндры двигателя. Так как при использовании наддува воздух в цилиндры подаётся принудительно (под давлением), а не только за счёт разрежения, создаваемого поршнем (это разрежение способно взять только определённое количество смеси воздуха с топливом), то в двигатель попадает большее количество смеси воздуха с топливом. Как следствие, при сгорании увеличивается объём сгораемого топлива с воздухом, образовавшийся газ занимает больший объём и соответственно возникает большая сила, давящая на поршень.
Как правило, у турбодвигателей меньше удельный эффективный расход топлива (грамм на киловатт-час, г/(кВт·ч)), и выше литровая мощность (мощность, снимаемая с единицы объёма двигателя — кВт/л), что даёт возможность увеличить мощность небольшого мотора без увеличения оборотов двигателя.
Вследствие увеличения массы воздуха, сжимаемой в цилиндрах, температура в конце такта сжатия заметно увеличивается и возникает вероятность детонации. Поэтому, конструкцией турбодвигателей предусмотрена пониженная степень сжатия, применяются высокооктановые марки топлива, а также в системе предусмотрен промежуточный охладитель наддувочного воздуха (интеркулер), представляющий собой радиатор для охлаждения воздуха. Уменьшение температуры воздуха требуется также и для того, чтобы плотность его не снижалась вследствие нагрева от сжатия после турбины, иначе эффективность всей системы значительно упадёт. Особенно эффективен турбонаддув у дизельных двигателей тяжёлых грузовиков. Он повышает мощность и крутящий момент при незначительном увеличении расхода топлива. Находит применение турбонаддув с изменяемой геометрией лопаток турбины, в зависимости от режима работы двигателя.
Наиболее мощные (по отношению к мощности двигателя) турбокомпрессоры применяются на тепловозных двигателях. Например на дизеле Д49 мощностью 4000 л.с. установлен турбокомпрессор мощностью 1100 л.с.
Наибольшей (по абсолютной величине) мощностью обладают турбокомпрессоры судовых двигателей, которая достигает нескольких десятков тысяч киловатт (двигатели MAN B&W).

www.drive2.ru

описание, устройство, особенности :: SYL.ru

Для того, чтобы увеличить мощность и крутящий момент двигателя, человечество придумало массу устройств и агрегатов. Самый простой метод – пойти на увеличение объема камеры сгорания. Чем больше топлива попадет в цилиндр, тем больше произведется полезной работы. Но здесь возникают проблемы. Во-первых, размеры такого мотора могут быть запредельными, а во-вторых, эксплуатация такого ДВС ввиду высокого расхода топлива будет нерентабельной. Поэтому в последнее время все чаще автопроизводители оснащают свои машины турбиной. Что это за элемент. и в чем заключается принцип работы турбины? Узнаем подробно в нашей статье.

Характеристика

Турбина – это элемент впускной системы двигателя, который служит для увеличения давления воздуха за счет применения энергии отработавших газов. Благодаря ее работе, возрастает масса воздуха в камере сгорания.

Это позволяет ускорить такты работы двигателя и увеличить его крутящий момент. Также отметим, что первые турбины имели механический привод. Принцип работы такой турбины заключался в преобразовании энергии от коленчатого вала. С последним элемент соединялся путем ременной передачи. Но вскоре такие агрегаты перестали использоваться. Сейчас все производители применяют газовую турбину, принцип работы которой позволяет увеличить КПД двигателя на 80 процентов вместо 30.

Где используется

В основном, такой агрегат можно встретить на современных автомобилях. Но используется данный нагнетатель не на всех ДВС. Сдерживающим фактором применения турбины на бензиновых моторах является высокая степень детонации. Она связана с увеличением частоты вращения ДВС и огромной температурой выхлопных газов (до тысячи градусов). Ввиду этого часто используется турбина на дизельном двигателе. Принцип работы такого ДВС несколько иной. Здесь меньший риск детонации, а температура газов не превышает 600 градусов. Особенно часто компрессоры встречаются на коммерческом транспорте. Невозможно представить современный автобус или магистральный тягач, не оснащенный такой турбиной. Если говорить о марках, то турбина устанавливается на следующие авто:

Есть и другие сферы, где применяется подобный элемент. Например, это электростанции и ДВС кораблей. Но здесь используется уже паровая турбина, принцип работы которой мы рассмотрим немного позже.

Недостатки

Почему данный элемент присутствует не на всех двигателях внутреннего сгорания? В первую очередь, применение турбины увеличивает себестоимость производства авто. Помимо самой улитки, требуется еще ряд других элементов.

К тому же, для работы с турбиной двигателю нужна другая более крепкая поршневая система и блок. Это тоже влечет за собой дополнительные расходы. Также среди недостатков можно отметить так называемую турбояму (когда мотор не может набрать обороты за нужное время). Причинами данного явления является инерционность компрессора.

Конструкция

Итак, давайте рассмотрим устройство и принцип работы турбины. А состоит данный элемент из трех основных составляющих:

В конструкцию последней входит турбинное и компрессорное колеса, вал ротора, подшипники скольжения и уплотнительные кольца. Все это заключено в крепкий металлический термостойкий корпус. Поскольку принцип работы турбины двигателя основан на использовании энергии выхлопных газов, горячая часть улитки может раскаляться до тысячи и более градусов Цельсия.

Вспомогательные элементы

Поскольку турбина входит в состав впускной системы, ее работа невозможна без использования воздушного фильтра, дроссельной заслонки, а также интеркулера.

Последний призван охладить кислород, который нагнетается в камеру под давлением. Чем холоднее воздух в интеркулере, тем лучше сгорает смесь в цилиндрах. Также в конструкции не обходится без соединительных и масляных шлангов.

Как работает

Стоит отметить, что принцип работы турбины на бензиновом двигателе такой же, как и на дизельном. Во время работы ДВС вырабатываются выхлопные газы. Они поступают в корпус (горячую часть улитки), где двигаются по лопаткам турбинного колеса. Последнее раскручивается до невероятных скоростей – 100 и более тысяч оборотов в минуту. Поскольку турбинное колесо жестко соединено с валом, крутящий момент передается на вторую холодную часть турбины. Та, в свою очередь, начинает захватывать кислород из атмосферы. Он проникает внутрь после того, как пройдет через фильтр. Далее воздух под давлением попадает во впускной коллектор, где смешивается с топливом и проникает в камеру сгорания. В качестве материалов для корпуса турбины используются жаропрочные марки стали и железоникелевый сплав.

Производительность компрессора зависит от ее формы и габаритных размеров. Чем больше ее диаметр, тем больше воздуха засасывается во впускной коллектор. Но нельзя постоянно увеличивать размеры компрессора. Это может привести к турбозадержке. Малая турбина раскручивается значительно быстрее до номинальной скорости. Но на пике имеет меньшую производительность. Поэтому размеры и форма элемента подбираются строго индивидуально для каждого ДВС. Нельзя установить агрегат от бензинового авто на дизельный, и наоборот. Хоть и имеет одинаковый принцип работы турбина, действовать она будет иначе на разных авто.

Важный момент: для регулирования давления наддува в конструкции предусмотрен специальный перепускной клапан. Он имеет пневматический привод, а управляется ЭБУ двигателя.

Система смазки

Это неотъемлемая составляющая любой турбины. Принцип работы системы смазки простой. Масло подается между подшипником и корпусом компрессора через множество каналов под давлением. Но не стоит думать, что эта система нужна только для смазки. Также она охлаждает нагретые детали компрессора. На некоторых двигателях турбина сопряжена с общей системой охлаждения. Благодаря этому, достигается лучшее охлаждение, но такая конструкция значительно сложнее и дороже в производстве.

Дабы избавиться от турбоямы, производители постоянно совершенствуют конструкцию турбины на дизеле. Принцип работы ее остается прежним, но меняются следующие моменты:

Типы турбин

На данный момент существует несколько популярных типов компрессоров:

Для большей производительности на автомобиль может быть установлено два компрессора. Такие системы получили маркировку «Твин-турбо».

Устанавливаются данные механизмы последовательно. При этом первая турбина работает на низких оборотах, а вторая на высоких. На V-образных моторах нагнетатели устанавливаются параллельно (на каждый ряд по одной турбине). Как показывает практика, установка двух небольших компрессоров значительно эффективнее, чем применение одного, но большого.

Паровая турбина

Принцип работы ее немного иной. Пар, который образуется в котле, под давлением попадает на крыльчатку турбины. Последняя совершает обороты, тем самым, вырабатывая механическую энергию. Обычно такая турбина соединена с генератором и применяется на электростанциях. Благодаря механической энергии, генератор производит электричество. Мощность таких агрегатов может достигать 1000 МВт.

Однако данный показатель существенно зависит от перепада давления пара на входе и выходе. Также подобные турбины применяются для привода питательного насоса, на кораблях и судах с ядерной установкой. Что касается военных кораблей, здесь применяется газовая турбина. Принцип работы ее заключается в следующем. Газ поступает через сопловой аппарат компрессора в область низкого давления. При этом он расширяется и ускоряется. Затем поток газа двигает лопатки турбины. Последние передают усилия на вал через диски. Таким образом создается полезный крутящий момент.

В заключение

Итак, мы выяснили принцип работы дизельной турбины, а также бензиновой и паровой. Как видите, данные элементы устанавливаются с единой целью – выработать полезный крутящий момент. В случае с автомобилями он тратится на подачу воздуха под давлением во впуск. А на электростанциях турбина необходима для работы генератора, что вырабатывает ток.

www.syl.ru

Конструкция паровых турбин - Уралэнергомаш

Общие представления об устройстве паровых турбин

Основные технические требования к паровым турбинам и их характеристики

Паровая турбина представляет собою роторный лопаточный двигатель, в котором энергия давления поступающего из котла пара сначала преобразуется в кинетическую энергию пара, вытекающего с большой скоростью из сопел, а затем, на лопатках ротора,- в механическую энергию вращения вала. Сопла это направляющие аппараты, предназначенные для преобразования внутренней энергии пара в кинетическую энергию упорядоченного движения молекул.

Схема простейшей паровой турбины представлена на рис. 1.

Основной частью турбины является ротор, состоящий из вала 1 с насаженным на нем рабочим колесом 2, на котором укреплены рабочие лопатки 3 изогнутой формы. Перед диском с рабочими лопатками имеется сопло 4, из которого пар поступает на рабочие лопатки турбины.


1 – вал; 2 – рабочее колесо; 3 – рабочая лопатка; 4 – сопло
Рисунок 3.1– Принцип действия турбины

Сопло и рабочее колесо составляют одну ступень. На рисунке 1.1, таким образом, представлена принципиальная схема одноступенчатой турбины.

Полученный в парогенераторе перегретый пар при температуре 600 С и давлении 30 МПа по паропроводам передаётся в сопла.

Если перед входом в сопло пар имел некоторую начальную скорость и начальное давление (см. рис. 2), то после выхода из сопла в результате расширения пара происходит увеличение его скорости до значения и уменьшение давления до значения . Скорость входа пара на рабочую лопатку называют абсолютной скоростью. Температура пара также при этом значительно понижается.

После выхода из сопла пар подается на рабочие лопатки турбины. Если турбина активная, то между ее рабочими лопатками расширения пара не происходит, следовательно, давление пара не меняется. Абсолютная скорость движения пара уменьшается с до вследствие вращения турбины со скоростью V. V – это окружная или переносная скорость.


Рис.2 – Схема активной турбины

Конструктивно турбина выполняется в виде нескольких ступеней, каждая из которых состоит из одного венца сопловых лопаток и одного венца рабочих лопаток.

Реактивными турбинами называют такие турбины, у которых расширение пара происходит не только в соплах перед поступлением пара на рабочие лопатки, но и на лопатках самого рабочего колеса. Это достигается тем, что канал, образованный рабочими лопатками выполняется суживающимся.

Изменение параметров пара в реактивной ступени турбины показано на рис. 3. В соплах турбины происходит частичное расширение пара до промежуточного давления .

Дальнейшее расширение пара до давления происходит в каналах между лопатками. Абсолютная скорость пара в сопле увеличивается до значения , а в началах между лопатками уменьшается из-за вращения лопаток до значения .


Рис.3 – Схема работы реактивной турбины

В настоящее время турбины выполняют многоступенчатыми, причем водной и той же турбине могут быть как активные, так и реактивные ступени.

Устройство паровой турбины

Турбина состоит из трех цилиндров (ЦВД, ЦСД и ЦНД), нижние половины корпусов которых обозначены соответственно 39, 24 и18. Каждый из цилиндров состоит из статора, главным элементом которого являются неподвижный корпус, и вращающегося ротора. К полумуфте 12 присоединяется полумуфта ротора электрогенератора (не показан), а к нему — ротор возбудителя. Цепочка из собранных отдельных роторов цилиндров, генератора и возбудителя называется валопроводом. Его длина при большом числе цилиндров (а самое большое их число в современных турбинах — 5) может достигать 80 м.


Рис.4 Устройство паровой турбины

Валопровод вращается во вкладышах 42, 29, 23, 20 и т.д. опорных подшипников скольжения на тонкой масляной пленке Как правило, каждый из роторов размещают на двух опорных подшипниках. Расширяющийся в турбине пар заставляет вращаться каждый из роторов, возникающие на них мощности складываются и достигают на полумуфте 12 максимального значения.

Каждый из роторов помещают в корпус цилиндра (см., например, поз. 24). При больших давлениях (а в современных турбинах оно может дос­тигать 30 МПа » 300 ат) корпус цилиндра (обычно ЦВД) выполняют двухстенным (из внутреннего 35 и внешнего 46 корпусов). Это уменьшает разность давлений на каждый из корпусов, позволяет сделать его стенки более тонкими, облегчает затяжку фланцевых соединений и позволяет турбине при необходимости быстро изменять свою мощность.

Все корпуса в обязательном порядке имеют горизонтальные разъемы 13, необходимые для установки роторов внутри цилиндров при монтаже, а также для легкого доступа внутрь цилиндров при ревизиях и ремонтах. Пар внутри турбины имеет высокую температуру, а ротор вращается во вкладышах на масляной пленке, температура масла которой как по соображениям пожаробезопасности, так и необходимости иметь определенные смазочные свойства, не должна превышать 100 °С (а температура подаваемого и отводимого масла должна быть еще ниже). Поэтому вкладыши подшипников выносят из корпусов цилиндров и размещают их в специальных строениях — опорах Таким образом, вращающиеся концы каждого из роторов соответствующего цилиндра необходимо вывести из невращающегося статора, причем так, чтобы с одной стороны исключить какие-либо (даже малейшие) задевания ротора о статор, а с другой — не допустить значительную утечку пара из цилиндра в зазор между ротором и статором, так как это снижает мощность и экономичность турбины. Поэтому каждый из цилиндров снабжают концевыми уплотнениями (см. поз. 40, 32, 19) специальной конструкции.

Турбина устанавливается в главном корпусе ТЭС на верхней фундаментной плите. В плите выполняются прямоугольные окна по числу цилиндров, в которых размещаются нижние части корпусов цилиндров, а также осуществляется вывод трубопроводов, питающих регенеративные подогреватели, паропроводы свежего и вторично перегретого пара, переходный патрубок к конденсатору.

После изготовления турбина проходит контрольную сборку и опробование на заводе-изготовителе. После этого ее разбирают на более-менее крупные блоки, доводят до хорошего товарного вида, консервируют, упаковывают в деревянные ящики и отправляют для монтажа на ТЭС.

При работе турбины пар из котла по одному или нескольким паропроводам (это зависит от мощности турбины) поступает сначала к главной паровой задвижке, затем к стопорному (одному или нескольким) и, наконец, к регулирующим клапанам (чаще всего — 4). От регулирующих клапанов (на рис. 4 не показаны) пар по перепускным трубам 1 (на рис. 4 их четыре: две из них присоединены к крышке 46 внешнего корпуса ЦВД, а две других подводят пар в нижние половины корпуса) подается в паровпускную камеру 33 внутреннего корпуса ЦВД. Из этой полости пар попадает в проточную часть турбины и, расширяясь, движется к выходной камере ЦВД 38. В этой камере в нижней половине корпуса ЦВД имеются два выходных патрубка 37. К ним приварены паропроводы, направляющие пар в котел для промежуточного перегрева.

Вторично перегретый пар по трубопроводам поступает через стопорный клапан (не показан на рис. 4) к регулирующим клапанам 4, а из них — в паровпускную полость ЦСД 26. Далее пар расширяется в проточной части ЦСД и поступает в его выходной патрубок 22, а из него — в две перепускные трубы 6 (иногда их называют ресиверными), которые подают пар в паровпускную камеру ЦНД 9. ЦВД и ЦСД, ЦНД почти всегда выполняют двухпоточными: попав в камеру 9, пар расходится на два одинаковых потока и, пройдя их, поступает в выходные патрубки ЦНД 14. Из них пар направляется вниз в конденсатор. Перед передней опорой 41 располагается блок регулирования и управления турбиной 44. Его механизм управления 43 позволяет пускать, нагружать, разгружать и останавливать турбину.

Уплотнение представлено на рис. 5.


Рис.5. Лабиринтное уплотнение для валов турбин

В обойме 7, имеющей такую же конструкцию, как и обойма диафрагм выполнена кольцевая расточка 1, в которую вставляются сегменты уплотнений 3 (по три сегмента в каждую половину обоймы). Сегменты имеют тонкие (до 0,3 мм) кольцевые гребни, устанавливаемые по отношению к валу с очень малым зазором (0,5—0,6 мм). Совокупность кольцевых щелей между гребнями 4 и кольцевыми выступами 6 и кольцевых камер между ними называется лабиринтовым уплотнением. Высокое гидравлическое сопротивление, которым оно обладает, обеспечивает малую утечку пара помимо проточной части турбины.

Типичная рабочая лопатка (рис. 6) состоит из трех основных элементов: профильной части 1; хвостовика 2, служащего для крепления лопатки на диске; шипа 6 прямоугольной, круглой или овальной формы, выполняемого на торце профильной части лопатки за одно целое.


Рис.6.Рабочая лопатка ЦВД и ЦСД

Лопатки изготавливаются из нержавеющей стали, содержащей 13 % хрома, методом штамповки и последующего фрезерования и набираются на диске через два специальных колодца, в которые затем устанавливаются замковые лопатки с хвостовиками специальной формы.

Отдельно прокатывают бандажную ленту 7, в которой пробивают отверстия, соответствующие форме шипов и расстоянию между ними. Лента нарезается на куски со строго рассчитанным числом объединяемых лопаток. Бандажная лента надевается на шипы, которые затем расклепываются. Ряд соседних лопаток (обычно от 5 до 14), объединенных бандажной лентой (бандажом), называется пакетом рабочих лопаток. Главная цель пакетирования — обеспечить вибрационную надежность рабочих лопаток (не допустить их поломки от усталости вследствие колебаний). После расклепки шипов на бандажах рабочих лопаток ротор устанавливают на токарный станок и окончательно протачивают гребни уплотнений.

На рис. 6 показана лишь одна из типичных конструкций, которые отличаются большим разнообразием как типов хвостовиков, так и бандажей. В современных конструкциях бандажи фрезеруют заодно с профильной частью (с шириной бандажа, равной шагу лопаток), иногда соединяют рабочие лопатки в пакете сваркой.


Рис.7 Ротор двухпоточного ЦНД мощной турбины

На рис. 7 показан двухпоточный ротор ЦНД в процессе обработки на токарном станке. Первые две ступени имеют ленточ­ные бандажи, а последние ступени — две проволочные связи.

Главным элементом проточной части турбины, определяющим весь ее облик, является рабочая лопатка последней ступени. Чем большую длину она имеет и чем на большем диаметре она установлена (иными словами, чем больше площадь для прохода пара последней ступени), тем более экономичнее турбина. Поэтому история совершенствования турбин — это история создания последних ступеней. В начале 50-х годов ЛМЗ была разработана рабочая лопатка длиной 960 мм для последней ступени со средним диаметром 2,4 м, и на ее базе созданы турбины мощностью 300, 500 и 800 МВт. В конце 70-х была создана новая рабочая лопатка длиной 1200 мм для ступени со средним диаметром 3 м. Это позволило создать новую паровую турбину для ТЭС мощностью 1200 МВт и для АЭС мощностью 1000 МВт.


Рис.8 Опора валопровода

На рис. 8 показана одна из опор валопровода. Основанием 12 нижняя половина корпуса 2 устанавливается на фундаментную раму (на рисунке не показана). В расточку корпуса на колодках 1, 4 и 10 помещается нижняя половина вкладыша 3. Внутренняя поверхность 8 обеих половин вкладыша выполнена цилиндрической или овальной и залита баббитом, — легкоплавким антифрикционным сплавом на основе олова, допускающего вращение ротора на очень низкой частоте вращения даже при отсутствии смазки. Прямо на поверхность вкладыша 8 и на аналогичную поверхность соседнего вкладыша при монтаже турбины укладывается ротор. Сверху его накрывают верхней половиной вкладыша и притягивают к нижней половине шпильками, ввинчиваемыми в отверстия 9. Затем устанавливается крышка корпуса подшипника.

Масло для смазки шеек валов подается насосами из масляного бака, установленного на нижней отметке конденсационного помещения. Размер масляного бака зависит от мощности турбины: чем больше мощность, тем больше цилиндров и, следовательно, роторов и их опор, требующих смазки. Кроме того, с ростом мощности растет диаметр шеек, и эти два обстоятельства требуют большого расхода масла и соответственно масляного бака большой емкости, достигающей 50—60 м3. Для смазки подшипников используется либо специальное (турбинное) минеральное масло, либо синтетические негорючие масла. Последние намного дороже, но зато пожаробезопаснее.

От насосов по трубопроводам масло, пройдя через маслоохладители, поступает к емкостям, располагаемым в крышках подшипника, а из них — к отверстиям 6 и к выборке 7, раздающей масло на всю ширину шейки вала. Масло за счет гидродинамических сил «загоняется» под шейку вала, и таким образом вал «плавает» на масляной пленке, не касаясь баббитовой заливки. Масло, пройдя под шейкой вала, выходит через торцевые зазоры вкладыша и стекает на дно корпуса подшипника, откуда самотеком направляется обратно в масляный бак. Вкладыш опоры показан на рис. 9.


Рис.9 Опорный вкладыш опоры валопровода

Типы паровых турбин и области их использования

Для понимания места и роли паровых турбин рассмотрим их общую классификацию. Из большого разнообразия используемых паровых турбин, прежде всего можно выделить турбины транспортные и стационарные.

Транспортные паровые турбины чаще всего используются для привода гребных винтов крупных судов.

Стационарные паровые турбины — это турбины, сохраняющие при эксплуатации неизменным свое местоположение. В настоящей книге рассматриваются только стационарные паровые турбины.

В свою очередь стационарные паровые турбины можно классифицировать по ряду признаков.

  1. По назначению различают турбины энергетические, промышленные и вспомогательные.

Энергетические турбины служат для привода электрического генератора, включенного в энергосистему, и отпуска тепла крупным потребителям, например жилым районам, городам и т.д. Их устанавливают на крупных ГРЭС, АЭС и ТЭЦ. Энергетические турбины характеризуются, прежде всего, большой мощностью, а их режим работы — постоянной частотой вращения, определяемой постоянством частоты сети.

Основным производителем энергетических паровых турбин в России является Ленинградский металлический завод (Санкт-Петербург). Он выпускает мощные паровые турбины для ТЭС (мощностью 1200, 800, 500, 300 и 200 МВт), ТЭЦ (мощностью 180, 80 и 50 МВт и менее), АЭС (мощностью 1000 МВт).

Другим крупным производителем энергетических паровых турбин является Турбомоторный завод (ТМЗ, г. Екатеринбург). Он выпускает только теплофикационные турбины (мощностью 250, 185, 140, 100 и 50 МВт и менее).

На ТЭС России установлено достаточно много мощных паровых тур­бин Харьковского турбинного завода (ХТЗ, Украина) (мощностью 150, 300 и 500 МВт). Им же произведены все паровые турбины, установленные на АЭС России мощностью 220, 500 и 1000 МВт.

Таким образом, в настоящее время в России функционирует всего два производителя мощных паровых турбин. Если говорить о зарубежных производителях турбин, то их число также является небольшим. Большинство из них являются транснациональными объединениями. В Европе главными производителями паровых турбин являются компании Siemens (Германия), Acea Brown Bovery (ABB, германско-швейцарское объединение), GEC-Alsthom (англо-французское объединение), Scoda (Чехия). В США производителями мощных энергетических турбин являются компании General Electric и Westinghouse, в Японии — Hitachi, Toshiba, Mitsubisi. Все перечисленные производители выпускают паровые турбины вплоть до мощности 1000 МВт и выше. Технический уровень некоторых из них не только не уступает нашим производителям, но и превосходит их.

Промышленные турбины также служат для производства тепловой и электрической энергии, однако их главной целью является обслуживание промышленного предприятия, например, металлургического, текстильного, химического, сахароваренного и др. Часто генераторы таких турбин работают на маломощную индивидуальную электрическую сеть, а иногда используются для привода агрегатов с переменной частотой вращения, например воздуходувок доменных печей. Мощность промышленных турбин существенно меньше, чем энергетических. Основным производителем промышленных турбин в России является Калужский турбинный завод (КТЗ).

Вспомогательные турбины используются для обеспечения технологического процесса производства электроэнергии — обычно для привода питательных насосов и воздуходувок котлов.

Питательные насосы энергоблоков мощностью вплоть до 200 МВт приводятся электродвигателями, а мощностью выше — с помощью паровых турбин, питаемых паром из отбора главной турбины. Например, на энергоблоках мощностью 800 и 1200 МВт установлено соответственно по два и три питательных турбонасоса мощностью 17 МВт каждый, на энергоблоках мощностью 250 (для ТЭЦ) и 300 МВт — один питательный турбонасос мощностью 12 МВт; на энергоблоках мощностью 1000 МВт для АЭС используется два питательных насоса мощностью 12 МВт.

Котлы энергоблоков мощностью 800 и 1200 МВт оборудованы соответственно двумя и тремя воздуходувками, привод которых осуществляется также паровыми турбинами мощностью по 6 МВт каждая. Основным производителем вспомогательных паровых турбин в России является КТЗ.

  1. По виду энергии, получаемой от паровой турбины, их делят на конденсационные и теплофикационные.

В конденсационных турбинах (типа К) пар из последней ступени отводится в конденсатор, они не имеют регулируемых отборов пара, хотя, как правило, имеют много нерегулируемых отборов пара для регенеративного подогрева питательной воды, а иногда и для внешних тепловых потребителей. Главное назначение конденсационных турбин — обеспечивать производство электроэнергии, поэтому они являются основными агрегатами мощных ТЭС и АЭС. Мощность самых крупных конденсационных турбоагрегатов достигает 1000—1500 МВт.

Теплофикационные турбины имеют один или несколько регулируемых отборов пара, в которых поддерживается заданное давление. Они предназначены для выработки тепловой и электрической энергии, и мощность самой крупной из них составляет 250 МВт. Теплофикационная турбина может выполняться с конденсацией пара и без нее. В первом случае она может иметь отопительные отборы пара (турбины типа Т) для нагрева сетевой воды для обогрева зданий, предприятий и т.д., или производственный отбор пара (турбины типа П) для технологических нужд промышленных предприятий, или тот и другой отборы (турбины типа ПТ и ПР). Во втором случае турбина носит название турбины с противодавлением (турбины типа Р). В ней пар из последней ступени направляется не в конденсатор, а обычно производственному потребителю. Таким образом, главным назначением турбины с противодавлением является производство пара заданного давления (в пределах 0,3—3 МПа). Турбина с противодавлением может также иметь и регулируемый теплофикационный или промышленный отбор пара, и тогда она относится к типу ТР или ПР.

Теплофикационные турбины с отопительным отбором пара (типа Т) спроектированы так, чтобы при максимальной теплофикационной нагрузке ступени, расположенные за зоной отбора, мощности не вырабатывали. В последние годы ряд турбин проектируются так, что даже при максимальной нагрузке последние ступени вырабатывают мощность. Такие турбины относятся к типу ТК.

  1. По используемым начальным параметрам пара паровые турбины можно разделить на турбины докритического и сверхкритического начального давления, перегретого и насыщенного пара, без промежуточного перегрева и с промежуточным перегревом пара.

Как уже известно критическое давление для пара составляет примерно 22 МПа, поэтому все турбины, начальное давление пара перед которыми меньше этого значения, относятся к паровым турбинам докритического начального давления. В России стандартное докритическое давление для паровых турбин выбрано равным 130 ат (12,8 МПа), кроме того, имеется определенный процент турбин на начальное давление 90 ат (8,8 МПа). На докритические параметры выполняются все паровые турбины для АЭС и ТЭЦ (кроме теплофикационной турбины мощностью 250 МВт), а также турбины мощностью менее 300 МВт для ТЭС. Докритическое начальное давление зарубежных паровых турбин обычно составляет 16—17 МПа, а максимальная единичная мощность достигает 600—700 МВт.

Все мощные конденсационные энергоблоки (300, 500, 800, 1200 МВт), а также теплофикационный энергоблок мощностью 250 МВт выполняют на сверхкритические параметры пара (СКД) — 240 ат (23,5 МПа) и 540 °С. Переход от докритических параметров пара к СКД позволяет экономить 3—4 % топлива.

Все турбины ТЭС и ТЭЦ работают перегретым паром, а АЭС — насыщенным (с небольшой степенью влажности).

Все мощные конденсационные турбины на докритические и сверхкритические параметры пара выполняют с промежуточным перегревом. Из теплофикационных турбин только турбина ЛМЗ на докритические параметры мощностью 180 МВт и турбина ТМЗ на СКД мощностью 250 МВт имеют промежуточный перегрев. Устаревшие конденсационные турбины мощностью 100 МВт и менее и многочисленные теплофикационные паровые турбины вплоть до мощности 185 МВт строятся без промперегрева.

  1. По зоне использования турбин в графике электрической нагрузки паровые турбины можно разделить на базовые и полупиковые. Базовые турбины работают постоянно при номинальной нагрузке или близкой к ней. Они проектируются так, чтобы и турбина, и турбоустановка имели максимально возможную экономичность. К этому типу турбин следует, безусловно, отнести атомные и теплофикационные турбины. Полупиковыетурбины создаются для работы с периодическими остановками на конец недели (с ночи пятницы до утра в понедельник) и ежесуточно (на ночь). Полупиковые турбины (и турбоустановки) с учетом их малого числа часов работы в году выполняют более простыми и соответственно более дешевыми (на сниженные параметры пара, с меньшим числом цилиндров). Электроэнергетика России в силу ряда причин всегда страдала от недостатка в энергосистеме полупиковых мощностей. Примерно 25 лет назад ЛМЗ спроектировал полупиковую конденсационную турбину мощностью 500 МВт на параметры 12,8 МПа, 510 °С/510 °С. Головной образец этой турбины предполагалось установить на Лукомльской ГРЭС (б. Белоруссия). Однако до сих пор ни одной специальной полупиковой турбины в России не работает. Вместе с тем в Японии и США работают десятки полупиковых турбин упрощенной конструкции.
  2. По конструктивным особенностям паровые турбины можно классифицировать по числу цилиндров, частоте вращения и числу валопроводов.

По числу цилиндров различают турбины одно- и многоцилиндровые. Количество цилиндров определяется объемным пропуском пара в конце процесса расширения. Чем меньше плотность пара, т.е. меньше его конечное давление, и чем больше мощность турбины, т.е. больше массовый расход, тем больше объемный пропуск и соответственно требуемая площадь для прохода пара через рабочие лопатки последней ступени. Однако если рабочие лопатки делать длиннее, а радиус их вращения больше, то центробежные силы, отрывающие профильную часть лопатки, могут возрасти настолько, что лопатка оторвется. Поэтому с увеличением мощности сначала переходят на двухпоточный ЦНД, а затем увеличивают их число. Конденсационные турбины можно выполнить одноцилиндровыми вплоть до мощности 50—60 МВт, двухцилиндровыми — до 100—150 МВт, трехцилиндровыми — до 300 МВт, четырехцилиндровыми — до 500 МВт, пятицилиндровыми — вплоть до 1300 МВт.

По частоте вращения турбины делятся на быстроходные и тихоходные. Быстроходные турбины имеют частоту вращения 3000 об/мин = 50 об/с. Они приводят электрогенератор, ротор которого имеет два магнитных полюса, и поэтому частота вырабатываемого им тока равна 50 Гц. На эту частоту строят большинство паровых турбин для ТЭС, ТЭЦ и частично для АЭС в нашей стране и почти во всем мире. В Северной Америке и на части территории Японии быстроходные турбины строят на частоту вращения 3600 об/мин = 60 об/с, так как там принятая частота сети равна 60 Гц.

Ранее в говорилось о том, что поскольку из-за низких начальных параметров работоспособность пара в турбинах АЭС мала, а снижение капитальных затрат требует увеличения мощности, т.е. массы пропускаемого пара, то объемный расход на выходе из турбины оказывается столь значительным, что оказывается целесообразным переход на меньшую частоту вращения. Так как число магнитных полюсов в электрогенераторе должно быть целым и четным, то переход на использование четырехполюсного электрогенератора и получения той же частоты сети, что и при двухполюсном электрогенераторе, требует снижения частоты вдвое. Таким образом, тихоходные турбины в нашей стране имеют частоту вращения 1500 об/мин = 25 об/с.


Рис.10 Тихоходная турбина насыщенного пара мощностью 1160 МВт для американской АЭС

На рис. 10 показана тихоходная атомная турбина фирмы ABB мощностью 1160 МВт на частоту вращения 30 об/с. Гигантские размеры турбины хорошо видны в сравнении с фигурой человека, стоящего у средней опоры ее валопровода. Турбина не имеет ЦСД, и пар из ЦВД направляется в два горизонтальных сепаратора-пароперегревателя (СПП), а из них — раздается на три двухпоточных ЦНД. По такой же схеме на частоту вращения 25 об/с построены энергоблоки мощностью 1000 МВт на Балаковской и Ростовской АЭС.

Для АЭС, построенных для теплых климатических условий, т.е. для высокой температуры охлаждающей воды и соответственно высокого давления в конденсаторе), можно строить и быстроходные атомные турбины (рис. 11). Пар к ЦВД турбины поступает из реакторного отделения по четырем паропроводам 11. Пройдя ЦВД, пар поступает к СПП 10 вертикального типа, а после них с помощью ресивера 3 раздается на три одинаковых двухпоточных ЦНД 4. Под каждым ЦНД установлен свой конденсатор, также хорошо видный на макете.

По числу валопроводов различают турбины одновальные (имеющие один валопровод — соединенные муфтами роторы отдельных цилиндров и генератора) и двухвальные(имеющие два валопровода каждый со своим генератором и связанные только потоком пара). На российских тепловых электростанциях используют только одновальные турбины.В начале 70-х годов на Славянской ГРЭС на Украине построена единственная двухвальная турбина мощностью 800 МВт, да и то потому, что в то время не было электрогенератора мощностью 800 МВт.


Рис.11 Быстроходная атомная турбина мощностью 1093 МВт для испанской АЭС (“ Трилло”), построенная фирмой Siemens

Для обозначения типов турбин ГОСТ предусматривает специальную маркировку, состоящую из буквенной и числовой частей. Буквенная часть указывает тип турбины, следующее за ней число — номинальную мощность турбины в мегаваттах. Если необходимо указать и максимальную мощность турбины, то ее значение приводят через косую черту. Следующее число указывает номинальное давление пара перед турбиной в МПа: для теплофикационных турбин далее через косую черту указывают давление в отборах или противодавление в МПа. Наконец, последняя цифра, если она имеется, указывает номер модификации турбины, принятый на заводе-изготовителе.

Приведем несколько примеров обозначений турбин.

Турбина К-210-12,8-3 — типа К, номинальной мощностью 210 МВт с начальным абсолютным давлением пара 12,8 МПа (130 кгс/см2), третьей модификации.

Трубина П-6-3,4/0,5 — типа П, номинальной мощностью 6 МВт, с на­чальным абсолютным давлением пара 3,4 МПа и абсолютным давлением отбираемого пара 0,5 МПа.

Турбина Т-110/120-12,8 — типа Т, номинальной мощностью 110 МВт и максимальной мощностью 120 МВт, с начальным абсолютным давлением пара 12,8 МПа.

Турбина ПТ-25/30-8,8/1 — типа ПТ, номинальной мощностью 25 МВт и максимальной мощностью 30 МВт, с начальным абсолютным давлением пара 8,8 МПа (90 ат) и абсолютным давлением отбираемого пара 1 МПа.

Турбина Р-100/105-12,8/1,45 — типа Р, номинальной мощностью 100 МВт максимальной мощностью 105 МВт, с начальным абсолютным давлением пара 12,8 МПа и абсолютным противодавлением 1,45 МПа.

Турбина ПР-12/15-8,8/1,45/0,7 — типа ПР, номинальной мощностью 12 МВт и максимальной мощностью 15 МВт, с начальным абсолютным давлением 8,8 МПа, давлением в отборе 1,45 МПа и противодавлением 0,7 МПа.

Основные технические требования к паровым турбинам и их характеристики

Для того чтобы увидеть, насколько совершенной машиной является паровая турбина, достаточно рассмотреть технические требования, предъявляемые к ней. Они сформулированы в государственных стандартах (ГОСТ). Здесь мы остановимся только на наиболее важных из них.

Прежде всего, к турбине предъявляется ряд требований, которые мож­но охватить одним термином — надежность. Надежность технического объекта — это его свойство выполнять заданные функции в заданном объеме при определенных условиях функционирования. Применительно к паровой турбине надежность — это бесперебойная выработка мощности при предусмотренных затратах топлива и установленной системе эксплуатации, технического обслуживания и ремонтов, а также недопущения ситуаций, опасных для людей и окружающей среды.

Важно подчеркнуть, что понятие надежности включает в себя и понятие экономичности. Бесперебойно работающая турбина, работающая с низкой экономичностью из-за износа или с ограничением мощности из-за внутренних неполадок, не может считаться надежной. Надежность — это комплексное свойство, характеризуемое такими подсвойствами, как безотказность, долговечность, ремонтопригодность, сохраняемость, управляемость, живучесть, безопасность. Не вдаваясь в строгие определения этих подсвойств, отметим главные из них.

Безотказность — это свойство турбины непрерывно сохранять работоспособное состояние в течение некоторой наработки. Средняя наработка на отказ для турбин ТЭС мощностью 500 МВт и более должна быть не менее 6250 ч, а меньшей мощности — не менее 7000 ч, а для турбин АЭС — не менее 6000 ч. Если учесть, что в календарном году 8760 ч и что какое-то время турбина не работает (например, по указанию диспетчера энергосистемы), то это означает, что отказы по вине турбины в среднем должны происходить не чаще 1 раза в год.

Полный установленный срок службы турбины ТЭС должен быть не менее 40 лет, а турбин АЭС — не менее 30 лет. При этом оговаривается два важных обстоятельства. Первое: этот срок службы не относится к быстро­изнашивающимся деталям, например, рабочим лопаткам, уплотнениям, крепежным деталям. Для таких деталей важен средний срок службы до капитального ремонта (межремонтный период). В соответствии с ГОСТ он должен быть не менее 6 лет (кроме того, на ТЭС и АЭС реализуется плановая система текущих и планово-предупредительных ремонтов).

Для турбин ТЭС, а точнее для их деталей, работающих при температуре свыше 450 °С, кроме такого показателя долговечности, как срок службы, вводится другой показатель — ресурс — суммарная наработка турбины от начала эксплуатации до достижения предельного состояния. На этапе проектирования предельное состояние определяется как назначенный ресурс. По определению — это ресурс, при достижении которого эксплуатация турбины должна быть прекращена независимо от ее технического состояния. На самом деле при достижении назначенного ресурса турбина может сохранить значительную дополнительную работоспособность (остаточный ресурс) и, учитывая ее высокую стоимость, срок работы турбины продляют. Учитывая нелогичность применительно к турбине термина «назначенный ресурс», стали употреблять термин «расчетный ресурс». Таким образом, расчетный (назначенный) ресурс — это наработка турбины, которая гарантируется заводом-изготовителем; при ее достижении должен быть рассмотрен вопрос о ее дальнейшей эксплуатации.

ГОСТ не регламентирует расчетного ресурса (он должен быть установлен в технических условиях или техническом задании на ее проектирование в каждом конкретном случае). Долгие годы расчетный ресурс составлял 100 тыс. ч, сейчас — как правило, 200 тыс. ч. Важнейшим требованием к турбине является высокая экономичность. Коэффициент полезного действия турбины оценивается по КПД ее цилиндров.

Коэффициент полезного действия цилиндра характеризуется той долей работоспособности пара, которую удалось преобразовать в механическую энергию. Наивысшую экономичность имеет ЦСД: в хороших турбинах он составляет 90—94 %. Коэффициент полезного действия ЦВД и ЦНД существенно меньше и в среднем составляет 84—86 %. Это уменьшение обусловлено существенно более сложным характером течения пара в решетках очень малой (несколько десятков миллиметров в первых ступенях ЦВД) и очень большой (1 м и более) в последних ступенях ЦНД высотой решеток. Рассчитать это течение и подобрать под него профили лопаток затруднительно даже при современных вычислительных средствах. Кроме того, значительная часть проточной части ЦНД работает влажным паром, капли влаги имеют скорость существенно меньшую, чем пар, и оказывают на вращающиеся рабочие лопатки тормозящее действие.

Кроме приведенных технических требований ГОСТ содержит многочисленные другие требования, в частности, к системе защиты турбины при возникновении аварийных ситуаций, к маневренности (диапазон длительной работы — обычно 30—100 % номинальной мощности; продолжительности пуска и остановки, число возможных пусков и т.д.), к системе регулирования и управления турбиной, к ремонтопригодности и безопасности (пожаробезопасности, уровня вибрации, шума и т.д.), методов контроля параметров рабочих сред (пара, масла, конденсата), транспортирования и хранения.

Источник: Языки программирования - Life-prog

uralenergomash.ru

Как работает турбина. — DRIVE2

Когда говорят о гоночных или спортивных машинах, часто всплывает тема турбонаддува. Турбины неизменно сопровождают современные дизеля. Турбина может существенно увеличить мощность двигателя без значительного роста его веса. Это большое преимущество привело к популярности турбин!

Давайте разберемся, как турбина увеличивает мощность, выживая при этом в экстремальных условиях работы. Мы познакомимся с вестгейтами, керамическими лопастями турбин и подшипниками, которые помогают турбинам делать работу еще лучше. Турбины – системы принудительного нагнетания воздуха. Они сжимают воздух. Сжатый воздух дает преимущество по мощности: в двигатель поступает больше воздуха, а это значит, что больше топлива может быть добавлено. Следовательно, каждое сгорание смеси в цилиндре дает больше мощности. Турбированный двигатель в общем случае всегда мощнее аналогичного по объему атмосферного. Двигатель меньшей массы может выдавать больше мощности при наличии наддува.

Чтобы создать давление воздуха, турбина использует поток выхлопных газов из двигателя для раскручивания своей крыльчатки, которая в свою очередь раскручивает воздушный насос. Турбина вращается с частотой до 150,000 об/мин – это в 30 раз быстрее среднего двигателя. Так как турбина работает с выхлопными газами, ей приходится выдерживать большие термические нагрузки.
Чтобы снять больше мощности с двигателя, необходимо увеличить количество топливно-воздушной смеси, которая сгорает в цилиндрах. Один из способов – добавить количество цилиндров или увеличить их объем. Часто эти изменения очень дороги. Турбина дешевле добавляет мощность, и именно поэтому она так популярна на вторичном рынке.
Турбина позволяет сгорать большему количеству топлива, увеличивая количество топлива и воздуха в цилиндрах. Типичная прибавка к давлению от турбины – 0.3 – 0.5 бар. Поскольку атмосферное давление на уровне моря 1 бар, легко подсчитать, что в камеры сгорания попадает на 50 % больше воздуха, следовательно увеличение мощности должно доходить до 50%. В действительности, эффект получается 30- 40 %.

Одна из причин этой неэффективности – сила, раскручивающая турбину, не приходит извне. Наличие турбины увеличивает сопротивление выхлопа. Это означает, что на отводе отработавших газов двигатель вынужден преодолевать возросшее обратное сопротивление, что уменьшает отдачу с цилиндров, в которых в этот момент происходит сгорание.
Турбина крепится на выхлопном коллекторе двигателя. Выхлопные газы двигателя раскручивают турбину. Турбина покоится на одном валу с компрессором, который располагается между воздушным фильтром и впускным коллектором. Компрессор накачивает воздух в цилиндры.
Выхлопной газ из цилиндров проходит через лопатки крыльчатки турбины, вызывая ее вращение. Чем больше выхлопных газов проходит, тем быстрее крутится турбина.

С другой стороны вала турбины устанавливают компрессор центробежного типа – он засасывает воздух в центре крыльчатки и разбрасывает его от центра из-за вращающегося вала.

Слишком много давления?
Воздух закачивается в цилиндры под давление и дальше сжимается поршнями. В этом кроится опасность – детонация. Детонация происходит из-за резкого увеличения температуры воздуха, при котором топливная смесь сгорает до воспламенения свечи. Поэтому турбированные машины обычно ездят на высокооктановом топливе, чтобы не доводить дело до детонации. Если давление наддува очень высоко, компрессию двигателя можно снизать, чтобы не переходить в детонацию.

Чтобы работать на скоростях до 150,000 об/мин, вал турбины требует серьезной защиты. Большинство подшипников взрываются при таких скоростях, поэтому турбины часто используют жидкие подшипники. Этот тип подшипников создает вокруг вала постоянный тонкий слой масла, которое постоянно накачивается насосом. Это служит двум целям: охлаждение и снижение трения.
В следующей главе рассмотрим компромиссы, на которые вынуждены идти инженеры при проектировании турбонаддува.
Главная проблема турбины – создание давления требует некоторого времени после нажатия на педаль газа. Проходит около секунды, прежде чем турбина выйдет на рабочее давление. Водитель чувствует турбояму при нажатии на газ, потом машина резко выстреливает.
Один из путей снижения турбоямы – уменьшение инерции вращающихся частей в основном снижением их веса. Это позволяет турбине и компрессору быстро ускоряться, нагнетая давление раньше. Инерция турбины преодолевается уменьшением размера турбины. Маленькая турбины выйдет на давление раньше и на более низких оборотах, но не сможет закачать достаточно воздуха на больших оборотах, когда двигателю надо действительно много воздуха. Большие обороты также опасны для маленькой турбины.
Турбина создает максимальное давление на высоких оборотах.Большая турбина хорошо качает на высоких оборотах, но отличается глубокой турбоямой, так как раскручивание ее более тяжелых частей занимает больше времени. К счастью, есть способы решить это противоречие.
Почти все автомобильные турбины имеют вестгейт, позволяющий использовать маленькую турбины для уменьшения турбоямы и предотвращающий турбину от слишком высоких скоростей на высоких оборотах двигателя. Вестгейт (от англ. Wastegate – ворота для мусора) – это клапан, позволяющий выхлопным газам обходить лопатки турбины. Вестгейт реагирует на давление. Если давление турбины становится слишком высоким, то турбина вращается слишком быстро. Вестгейт отводит часть отработавших газов мимо лопаток крыльчатки, замедляя тем самым скорость вращения турбины.
Некоторые турбины используют шариковые подшипники, но это необычные изделия – они сделаны прецизионно из продвинутых материалов, способных выдерживать температуру в турбине. Их применение объясняется тем, что они способны еще больше снизить трение по сравнению с обычными жидкими коллегами. Еще одно преимущество – они позволяют уменьшить размер вала.
Керамические лопатки турбины легче обычных стальных. Результат: турбина раскручивается еще быстрее с меньшей турбоямой.
Две турбины и дополнительные части. Некоторые двигатели используют две турбины разного размера. Маленькая турбина быстро раскручивается, уменьшая турбояму, а большая нагнетает давления на больших оборотах.
Когда воздух сжимается, он нагревается; нагретый воздух расширяется. То есть увеличение давления воздуха из турбины поднимает его температуру до попадания в цилиндры. Увеличение мощности происходит из-за увеличения количества молекул воздуха, попадающих в цилиндры, а необязательно из-за увеличения давления наддува.
Интеркулер – дополнительный компонент системы наддува, напоминающий обычных радиатор с той разницей, что воздух проходит через него снаружи и внутри. Входящий воздух проходит через лабиринты интеркулера, внешний воздух охлаждает интеркулер.
Интеркулер увеличивает мощность двигателя, охлаждая сжатый воздух из компрессора перед попаданием в двигатель. Например, при избыточном давлении 0.3 бар, интеркулер подаст 0.3 бара холодного воздуха, который плотнее и содержит больше молекул, чем теплый воздух.
Турбина помогает в условиях высокогорья, где плотность воздуха ниже. Атмосферные двигатели испытывают снижение мощности, потому что в цилиндры поступает меньше воздуха. Турбированный двигатель тоже снижает мощность, но уменьшение мощности будет не столь критичным, так как разреженный воздух легче закачивать.
Старые карбюраторные машины автоматически увеличивали подачу топлива при увеличении входящего воздуха. Современные инжекторные машины делают это до определенного момента. Инжекторная система полагается на датчики кислорода в выхлопной системе, чтобы определить правильность соотношения топливо-воздух, при добавлении турбины автоматически увеличится подача топлива.

www.drive2.ru

Газовая турбина — Википедия

Промышленная газовая турбина в разобранном виде

Га́зовая турби́на (фр. turbine от лат. turbo — вихрь, вращение) — лопаточная машина, в ступенях которой энергия сжатого и/или нагретого газа преобразуется в механическую работу на валу[1]. Основными элементами конструкции являются ротор (рабочие лопатки, закреплённые на дисках) и статор, именуемый сопловым аппаратом (направляющие лопатки, закреплённые в корпусе).

Газовые турбины используются в составе газотурбинных двигателей, стационарных газотурбинных установок (ГТУ) и парогазовых установок (ПГУ).

Попытки создать механизмы, похожие на турбины, делались очень давно. Известно описание примитивной паровой турбины, сделанное Героном Александрийским (1 в. до н. э.). В восемнадцатом веке англичанин Джон Барбер получил патент на устройство, которое имело большинство элементов, присутствующих в современных газовых турбинах. В конце XIX века, когда термодинамика, машиностроение и металлургия достигли достаточного уровня, Густав Лаваль (Швеция) и Чарлз Парсонс (Великобритания) независимо друг от друга создали пригодные для промышленного использования паровые турбины[2].

Первую в мире газовую реверсивную турбину сконструировал русский инженер и изобретатель Павел Дмитриевич Кузьминский в 1887 году. Его 10-ступенчатая турбина работала на парогазовой смеси, получаемой в созданной им же в 1894 году камере сгорания — «газопаророде».[3] Кузьминский применил охлаждение камеры сгорания водой. Вода охлаждала стенки и затем посту­пала внутрь камеры. Подача воды снижала температуру и в то же время увеличивала массу газов, поступающих в турбину, что должно было повысить эффективность установки.[4] В 1892 году П. Д. Кузьминский испытал турбину и предложил её военному министерству в качестве двигателя для дирижабля его собственной конструкции.[5] В 1897 году на Петербургском патронном заводе была построена действующая газовая турбина,[6] которую изобретатель готовил к показу на Всемирной выставке в Париже в 1900 году, однако не дожил до неё несколько месяцев.

Одновременно с Кузьминским опыты с газовой турбиной (в качестве перспективного двигателя для торпед) проводил также Чарлз Парсонс, однако вскоре пришёл к выводу, что имеющиеся сплавы из-за низкой жаропрочности не позволяют создать надёжный механизм, который приводился бы в движение струёй раскалённых газов либо парогазовой смесью, после чего сосредоточился на создании паровых турбин[7].

Газ под высоким давлением поступает через сопловой аппарат турбины в область низкого давления, при этом расширяясь и ускоряясь. Далее, поток газа попадает на рабочие лопатки турбины, отдавая им часть своей кинетической энергии и сообщая лопаткам крутящий момент. Рабочие лопатки передают крутящий момент через диски турбины на вал. Газовая турбина чаще всего используется как привод генераторов.

Механически газовые турбины могут быть значительно проще, чем поршневые двигатели внутреннего сгорания. Более сложные турбины (которые используются в современных турбореактивных двигателях), могут иметь несколько валов, сотни турбинных и статорных лопаток, а также обширную систему сложных трубопроводов, камер сгорания и теплообменников.

Упорные подшипники и радиальные подшипники являются критическими элементами разработки. Традиционно — это были гидродинамические или охлаждаемые маслом шарикоподшипники. Их превзошли воздушные подшипники, которые успешно используются в микротурбинах и вспомогательных силовых установках.

Газовые турбины часто используются во многих ракетах на жидком топливе, а также для питания турбонасосов, что позволяет использовать их в легковесных резервуарах низкого давления, хранящих значительную сухую массу.

Промышленные газовые турбины для производства электричества[править | править код]

Отличие промышленных газовых турбин от авиационных в том, что их массогабаритные характеристики значительно выше, они имеют каркас, подшипники и лопастную систему более массивной конструкции. По размерам промышленные турбины варьируются от монтируемых на грузовики мобильных установок до огромных комплексных систем. Чаще всего газовые турбины в электростанциях применяются в комбинированном парогазовом цикле, подразумевающем выработку пара остаточным теплом выхлопных газов в котле-утилизаторе с последующей подачей пара на паровую турбину для дополнительной выработки электроэнергии. Такие установки могут иметь высокий КПД — до 60 %. Кроме того, газовая турбина может работать в когенераторных конфигурациях: выхлоп используется для подогрева воды систем теплоснабжения для нужд ГВС и отопления, а также с использованием абсорбционных холодильных машин для систем хладоснабжения. Одновременное использование выхлопа для получения тепла и холода называется режимом тригенерации. КПД таких установок — газотурбинных ТЭЦ может очень высоким и доходить до 90 %, но эффективность их применения напрямую зависит от потребности в тепловой энергии, которая непостоянна в течение года и зависит от погодных условий.

Газовые турбины простого цикла могут выпускаться как для большой, так и для малой мощности. Одно из их преимуществ — способность входить в рабочий режим в течение нескольких минут, что позволяет использовать их как мощность во время пиковых нагрузок. Поскольку они менее эффективны, чем электростанции комбинированного цикла, они обычно используются как пиковые электростанции и работают от нескольких часов в день до нескольких десятков часов в год, в зависимости, от потребности в электроэнергии и генерирующей ёмкости. В областях с недостаточной базовой нагрузкой и на электростанциях, где электрическая мощность выдается в зависимости от нагрузки, газотурбинная установка может регулярно работать в течение большей части суток.

Микротурбины[править | править код]

Отчасти успех микротурбин обусловлен развитием электроники, делающей возможной работу оборудования без вмешательства человека. Микротурбины применяются в самых сложных проектах автономного электроснабжения.

Преимущества и недостатки газотурбинных двигателей[править | править код]

Преимущества
Недостатки

Эти недостатки объясняют, почему дорожные транспортные средства, которые меньше, дешевле и требуют менее регулярного обслуживания, чем танки, вертолеты и крупные катера, не используют газотурбинные двигатели, несмотря на неоспоримые преимущества в размере.

ru.wikipedia.org


Смотрите также