Термометр для воздуха


Термометр — Википедия

Ртутный медицинский термометр Электронный медицинский термометр Инфракрасный термометр

Термо́метр (греч. θέρμη «тепло» + μετρέω «измеряю») — прибор для измерения температуры воздуха, почвы, и так далее. Существует несколько видов термометров.

Изобретателем термометра принято считать Галилея: в его собственных сочинениях нет описания этого прибора, но его ученики, Нелли и Вивиани, засвидетельствовали, что уже в 1597 году он сделал нечто вроде термобароскопа (термоскоп). Галилей изучал в это время работы Герона Александрийского, у которого уже описано подобное приспособление, но не для измерения степеней тепла, а для поднятия воды при помощи нагревания. Термоскоп представлял собой небольшой стеклянный шарик с припаянной к нему стеклянной трубкой. Шарик слегка нагревали и конец трубки опускали в сосуд с водой. Через некоторое время воздух в шарике охлаждался, его давление уменьшалось и вода под действием атмосферного давления поднималась в трубке вверх на некоторую высоту. В дальнейшем при потеплении давление воздуха в шарике увеличивалось и уровень воды в трубке понижался при охлаждении же вода в ней поднималась. При помощи термоскопа можно было судить только об изменении степени нагретости тела: числовых значений температуры он не показывал, так как не имел шкалы. Кроме того, уровень воды в трубке зависел не только от температуры, но и от атмосферного давления. В 1657 г. термоскоп Галилея был усовершенствован флорентийскими учеными. Они снабдили прибор шкалой из бусин и откачали воздух из резервуара (шарика) и трубки. Это позволило не только качественно, но и количественно сравнивать температуры тел. Впоследствии термоскоп был изменен: его перевернули шариком вниз, а в трубку вместо воды налили бренди и удалили сосуд. Действие этого прибора основывалось на расширении тел, в качестве «постоянных» точек брали температуры наиболее жаркого летнего и наиболее холодного зимнего дня.

Изобретение термометра также приписывают лорду Бэкону, Роберту Фладду, Санториусу, Скарпи, Корнелиусу Дреббелю, Порте и Саломону де Коссу, писавшим позднее и частью имевшим личные отношения с Галилеем. Все эти термометры были воздушные и состояли из сосуда с трубкой, содержащего воздух, отделённый от атмосферы столбиком воды, они изменяли свои показания и от изменения температуры, и от изменения атмосферного давления.

Термометры с жидкостью описаны в первый раз в 1667 г. «Saggi di naturale esperienze fatte nell’Accademia del Cimento», где о них говорится как о предметах, давно изготовляемых искусными ремесленниками, которых называют «Confia», разогревающими стекло на раздуваемом огне лампы и выделывающими из него удивительные и очень нежные изделия. Сначала эти термометры наполняли водой, но они лопались, когда она замерзала; употреблять для этого винный спирт начали в 1654 году по мысли великого герцога тосканского Фердинанда II. Флорентийские термометры не только изображены в «Saggi», но сохранились в нескольких экземплярах до нашего времени в Галилеевском музее, во Флоренции; их приготовление описывается подробно.

Сначала мастер должен был сделать деления на трубке, соображаясь с её относительными размерами и размерами шарика: деления наносились расплавленной эмалью на разогретую на лампе трубку, каждое десятое обозначалось белой точкою, а другие чёрными. Обыкновенно делали 50 делений таким образом, чтобы при таянии снега спирт не опускался ниже 10, а на солнце не поднимался выше 40. Хорошие мастера делали такие термометры настолько удачно, что все они показывали одно и то же значение температуры при одинаковых условиях, однако такого не удавалось достигнуть, если трубку разделяли на 100 или 300 частей, чтобы получить большую точность. Наполняли термометры посредством подогревания шарика и опускания конца трубки в спирт, заканчивали наполнение при помощи стеклянной воронки с тонко оттянутым концом, свободно входившим в довольно широкую трубку. После регулирования количества жидкости, отверстие трубки запечатывали сургучом, называемым «герметическим». Из этого ясно, что эти термометры были большими и могли служить для определения температуры воздуха, но были ещё неудобны для других, более разнообразных опытов, и градусы разных термометров были не сравнимы между собою.

В 1703 г. Амонтон (англ. Guillaume Amontons) в Париже усовершенствовал воздушный термометр, измеряя не расширение, а увеличение упругости воздуха, приведённого к одному и тому же объёму при разных температурах подливанием ртути в открытое колено; барометрическое давление и его изменения при этом принимались во внимание. Нулём такой шкалы должна была служить «та значительная степень холода», при которой воздух теряет всю свою упругость (то есть современный абсолютный нуль), а второй постоянной точкой — температура кипения воды. Влияние атмосферного давления на температуру кипения ещё не было известно Амонтону, а воздух в его термометре не был освобождён от водяных газов; поэтому из его данных абсолютный нуль получается при −239,5° по шкале Цельсия. Другой воздушный термометр Амонтона, выполненный очень несовершенно, был независим от изменений атмосферного давления: он представлял сифонный барометр, открытое колено которого было продолжено кверху, снизу наполнено крепким раствором поташа, сверху нефтью и оканчивалось запаянным резервуаром с воздухом.

Современную форму термометру придал Фаренгейт и описал свой способ приготовления в 1723 г. Первоначально он тоже наполнял свои трубки спиртом и лишь под конец перешёл к ртути. Нуль своей шкалы он поставил при температуре смеси снега с нашатырём или поваренной солью, при температуре «начала замерзания воды» он показывал 32°, а температура тела здорового человека во рту или под мышкой была эквивалентна 96°. Впоследствии он нашёл, что вода кипит при 212° и эта температура была всегда одна и та же при том же состоянии барометра. Сохранившиеся экземпляры термометров Фаренгейта отличаются тщательностью исполнения.

Окончательно установил обе постоянные точки, тающего льда и кипящей воды, шведский астроном, геолог и метеоролог Андерс Цельсий в 1742 г. Но первоначально он ставил 0° при точке кипения, а 100° при точке замерзания. В своей работе Цельсий «Observations of two persistent degrees on a thermometer» рассказал о своих экспериментах, показывающих, что температура плавления льда (100°) не зависит от давления. Он также определил с удивительной точностью, как температура кипения воды варьировалась в зависимости от атмосферного давления. Он предположил, что отметку 0 (точку кипения воды) можно откалибровать, зная на каком уровне относительно моря находится термометр.

Позже, уже после смерти Цельсия, его современники и соотечественники ботаник Карл Линней и астроном Мортен Штремер использовали эту шкалу в перевёрнутом виде (за 0° стали принимать температуру плавления льда, а за 100° — кипения воды). В таком виде шкала оказалась очень удобной, получила широкое распространение и используется до нашего времени.

По одним сведениям, Цельсий сам перевернул свою шкалу по совету Штремера. По другим сведениям, шкалу перевернул Карл Линней в 1745 году. А по третьим — шкалу перевернул преемник Цельсия М.Штремер и в XVIII веке такой термометр был широко распространён под именем «шведский термометр», а в самой Швеции — под именем Штремера, но известнейший шведский химик Иоганн Якоб в своем труде «Руководства по химии» по ошибке назвал шкалу М. Штремера цельсиевой шкалой и с тех пор стоградусная шкала стала носить имя Андерса Цельсия.

Работы Реомюра в 1736 г. хотя и повели к установлению 80° шкалы, но были скорее шагом назад против того, что сделал уже Фаренгейт: термометр Реомюра был громадный, неудобный в употреблении, а его способ разделения на градусы был неточным и неудобным.

После Фаренгейта и Реомюра дело изготовления термометров попало в руки ремесленников, так как термометры стали предметом торговли.

В 1848 г. английский физик Вильям Томсон (лорд Кельвин) доказал возможность создания абсолютной шкалы температур, нуль которой не зависит от свойств воды или вещества, заполняющего термометр. Точкой отсчета в «шкале Кельвина» послужило значение абсолютного нуля: −273,15° С. При этой температуре прекращается тепловое движение молекул. Следовательно, становится невозможным дальнейшее охлаждение тел.

Жидкостные термометры основаны на принципе изменения объёма жидкости, которая залита в термометр (обычно это спирт или ртуть), при изменении температуры окружающей среды.

Жидкостные термометры подразделяются на ртутные и термометры с не ртутным заполнением. Последние применяются не только из-за экономических соображений, а также из-за использования широкого диапазона температур. Так, в термометрии, в качестве нертутного заполнения термометров используются вещества: спирты (этиловый, метиловый, пропиловый), пентан, толуол, сероуглерод, ацетон, таллиевая амальгама и галлий.[1]

В связи с тем, что с 2020 года ртуть будет под запретом во всём мире[2][3] из-за её опасности для здоровья[4], во многих областях деятельности ведётся поиск альтернативных наполнений для бытовых термометров. Например, такой заменой стал галинстан (сплав металлов: галлия, индия, олова и цинка). Галлий применяют для измерения высоких температур. Также ртутные термометры все чаще с большим успехом заменяются платиновыми или медными термометрами сопротивления. Также все шире применяются и другие типы термометров.

Об удалении разлившейся ртути из разбитого термометра см. статью Демеркуризация
Механический термометр Оконный механический термометр

Термометры этого типа действуют по тому же принципу, что и жидкостные, но в качестве датчика обычно используется металлическая спираль или лента из биметалла.

Уличный электронный термометр

Принцип работы электронных термометров основан на изменении сопротивления проводника при изменении температуры окружающей среды.

Электронные термометры более широкого диапазона основаны на термопарах (контакт между металлами с разной электроотрицательностью создаёт контактную разность потенциалов, зависящую от температуры).

Домашняя метеостанция

Наиболее точными и стабильными во времени являются термометры сопротивления на основе платиновой проволоки или платинового напыления на керамику. Наибольшее распространение получили PT100 (сопротивление при 0 °C — 100Ω) PT1000 (сопротивление при 0 °C — 1000Ω) (IEC751). Зависимость от температуры почти линейна и подчиняется квадратичному закону при положительной температуре и уравнению 4 степени при отрицательных (соответствующие константы весьма малы, и в первом приближении эту зависимость можно считать линейной). Температурный диапазон −200 — +850 °C.

RT=R0[1+AT+BT2+CT3(T−100)](−200∘C<T<0∘C),{\displaystyle R_{T}=R_{0}\left[1+AT+BT^{2}+CT^{3}(T-100)\right]\;(-200\;{}^{\circ }\mathrm {C} <T<0\;{}^{\circ }\mathrm {C} ),}
RT=R0[1+AT+BT2](0∘C≤T<850∘C).{\displaystyle R_{T}=R_{0}\left[1+AT+BT^{2}\right]\;(0\;{}^{\circ }\mathrm {C} \leq T<850\;{}^{\circ }\mathrm {C} ).}

Отсюда, RT{\displaystyle R_{T}} сопротивление при T °C, R0{\displaystyle R_{0}} сопротивление при 0 °C, и константы (для платинового сопротивления) —

A=3.9083×10−3∘C−1{\displaystyle A=3.9083\times 10^{-3}\;{}^{\circ }\mathrm {C} ^{-1}}
B=−5.775×10−7∘C−2{\displaystyle B=-5.775\times 10^{-7}\;{}^{\circ }\mathrm {C} ^{-2}}
C=−4.183×10−12∘C−4.{\displaystyle C=-4.183\times 10^{-12}\;{}^{\circ }\mathrm {C} ^{-4}.}

Оптические термометры позволяют регистрировать температуру благодаря изменению уровня светимости, спектра и иных параметров (см. Волоконно-оптическое измерение температуры) при изменении температуры. Например, инфракрасные измерители температуры тела.

Инфракрасные термометры[править | править код]

Инфракрасный термометр позволяет измерять температуру без непосредственного контакта с человеком. В 2014 году Россия подписала Минаматскую конвенцию о ртути, и к 2030 году Россия откажется от производства ртутных термометров.[5]В некоторых странах уже давно имеется тенденция отказа от ртутных термометров в пользу инфракрасных не только в медицинских учреждениях, но и на бытовом уровне.

Технические термометры используются на предприятиях в сельском хозяйстве, нефтехимической, химической, горно-металлургической промышленностях, в машиностроении, жилищно- коммунальном хозяйстве, транспорте, строительстве, медицине, словом во всех жизненных сферах.

Выделяют такие виды технических термометров:

Максимальные и минимальные термометры[править | править код]

По виду фиксации предельного значения температуры термометры разделяются на максимальные, минимальные и нефиксирующие[6]. Минимальный/максимальный термометр показывает минимальное/максимальное значение температуры, достигнутое с момента сброса. Так, медицинский ртутный термометр является максимальным — он показывает максимальное значение температуры, достигнутое в ходе измерения, благодаря узкой «шейке» между ртутным резервуаром и капилляром, в которой при уменьшении температуры столбик ртути разрывается, и ртуть не уходит обратно в резервуар из капилляра. Перед измерением фиксирующий (максимальный или минимальный) термометр должен быть сброшен (приведён к значению заведомо ниже/выше измеряемой температуры).

Газовый термометр — прибор для измерения температуры, основанный на законе Шарля.

В 1703 году Шарль установил, что одинаковое нагревание любого газа приводит к почти одинаковому повышению давления, если при этом объём остается постоянным. При изменении температуры по шкале Кельвина давление идеального газа в постоянном объёме прямо пропорционально температуре. Отсюда следует, что давление газа (при V = const) можно принять в качестве количественной меры температуры. Соединив сосуд, в котором находится газ, с манометром и проградуировав прибор, можно измерять температуру по показаниям манометра.

В широких пределах изменений концентраций газов и температур и малых давлениях температурный коэффициент давления разных газов примерно одинаков, поэтому способ измерения температуры с помощью газового термометра оказывается малозависящим от свойств конкретного вещества, используемого в термометре в качестве рабочего тела. Наиболее точные результаты получаются, если в качестве рабочего тела использовать водород или гелий.

ru.wikipedia.org

Термометры от лидера рынка | ООО «Тэсто Рус»

Пожалуй, не найти более важного измеряемого параметра, чем температура. Мы каждый день сталкиваемся с ней. У каждого человека свое представление о том, какая температура оптимальна для той или иной ситуации. Уже здесь и кроется проблема: люди ощущают температуру. Однако для получения объективных и сопоставимых результатов требуются термометры. В линейке Testo вы найдете подходящие для этой цели аналоговые и цифровые термометры и измерители температуры.

Преимущества термометров Testo h3>

Приборы для измерения температуры

Инфракрасные
термометры
h4>

Безопасное и точное измерение температуры на расстоянии.
 

Приборы для измерения температуры поверхности h4>

Термометры со встроенными и подключаемыми зондами для измерения температуры поверхности.

Приборы для измерения температуры воздуха h4>

Прецизионные термометры температуры воздуха.
 

Проникающие термометры h4>

Измерение температур в твердых или полутвердых средах.
 

Погружные термометры h4>

Для измерения температур в жидкостях, а также в агрессивных средах.

Термоиндикаторы h4>

Особо экономичная альтернатива термометру.
 

Тепловизоры h4>

Визуальное отображение температур. Идеальное решение для технического обслуживания, строительства и систем отопления.

Логгеры температуры h4>

Практичные помощники для мониторинга температуры.

Где вы хотите измерить температуру?

Использование термометров

Области применения аналоговых и цифровых термометров и измерителей температуры могут быть самыми разными. Вот лишь самые основные:

Термометр с управлением с помощью смартфона

Компактные измерительные приборы для смартфона

Наши универсальные решения для всех основных задач в области измерения. Линейка смарт-зондов – это не только термометры. Эта инновационная серия включает также приборы для измерения скорости потока с управлением через мобильное приложение testo Smart Probes.

Комплект смарт-зондов для систем вентиляции позволяет измерять температуру, скорость, а также влажность воздуха и рассчитывать объемный расход. Идеальное решение для систем кондиционирования и вентиляции.

Рекомендации по измерению и мониторингу температуры

Взяв в руки термометр, вы уже сделали первый шаг. Однако для действительно эффективного и точного измерения температуры необходимо учитывать несколько вещей.

Измерение температуры в жидкостях

Устанавливайте глубину погружения термометра в размере 10–15-кратного диаметра зонда. Это позволит уменьшить погрешность измерения. Точность показаний дополнительно повышается, если жидкость при измерении двигается.

Измерение температуры поверхности

При измерении движущегося воздуха с помощью термометра измерительный зонд просто погружается в подлежащую измерению среду. Благодаря специальной конструкции зонд воздуха имеет очень высокое быстродействие. Оптимизировать результат измерения можно, если перемещать зонд во время измерения в воздухе со скоростью 2–3 м/с.

Измерение температуры воздуха цифровым термометром

При измерении движущегося воздуха с помощью термометра измерительный зонд просто погружается в подлежащую измерению среду. Благодаря специальной конструкции зонд воздуха имеет очень короткое время реагирования. Оптимизировать результат измерения можно, если перемещать зонд во время измерения в воздухе со скоростью 2–3 м/с.

Другие измерительные приборы Testo

Регистрация температуры

Возникают ситуации, когда одного термометра недостаточно. Например, когда требуется длительный мониторинг температуры и эффективная регистрация измеренных значений. Тогда в дело вступают логгеры данных температуры. Оптимально подходящие для контроля температуры, эти маленькие помощники делают жизнь специалистов по качеству и управляющих зданиями по всему миру немного легче каждый день.

Трансмиттеры

Если вам необходима полная интеграция измеренных значений температуры в систему автоматизации здания, вам не обойтись без трансмиттеров температуры. Как и термометр, они сначала замеряют температуру, однако затем преобразуют полученное значение в электрический сигнал, который может быть использован для управления определенными процессами.


Измерение температуры поверхности

Измерение температуры поверхности занимает особое место в широком спектре разнообразных измерительных задач. Ведь приборы для измерения температуры поверхности  находят применение не только в промышленности, при монтаже или при эксплуатации и обслуживании сооружений. Данный способ измерения чаще всего применяется в пищевой промышленности. В конце концов, именно измерение температуры поверхности делает возможным быстрый и надежный выборочный контроль качества пищевых продуктов. Зачастую точные показания температуры поверхности делают ненужным более сложное измерение внутренней температуры.

www.testo.ru

Измеряйте температуру воздуха быстро и точно

Среди всех видов измерения температуры мы чаще всего измеряем именно температуру воздуха. Часто люди, товары и продукты бывают очень чувствительны к слишком высоким или низким значениям температуры.

Например, температура воздуха измеряется в жилых и офисных зданиях, а также в зонах для хранения чувствительных к температуре товаров.

Преимущества приборов Testo для измерения температуры воздуха

Приборы со встроенными сенсорами h4>

Для быстрых измерений при одинаковых условиях.

Приборы с подключаемыми зондами h4>

Для большей гибкости при измерении и использовании при меняющихся условиях.

Управление со смартфона

 

h4>

Настоящее произведение искусства – без кабеля, но с мобильным приложением Testo Smart Probes. Профессиональные инструменты в компактном формате.

Зонды температуры

 

h3>

Большой выбор моделей для любых задач и возможность изготовления зондов по индивидуальному заказу.

Области применения

Уровень комфорта
h4>

Зонды температуры воздуха

Зонды температуры воздуха широко применяются для измерений в холодильных прилавках, морозильных шкафах, системах кондиционирования (температура подаваемого воздуха), в системах вентиляции (подаваемый/отведенный воздуха) или в области метеорологии.

В этих зондах сенсор температуры открыт и готов воспринимать воздушный поток. Для достижения оптимального результата вам нужно двигать зонд в воздухе со скоростью 2 – 3 м/с.

Физические основы измерения температуры воздуха

Температура – самая часто измеряемая физическая величина после времени. Температура тела – это мера энергии движения частиц, из которых это тело состоит.

Когда тело получает тепловую энергию, скорость движения его частиц возрастает. Это, в свою очередь, приводит к повышению температуры тела.

Если энергия забирается из тела, скорость его частиц падает, а с ней падает и температура.

Цельсий, Фаренгейт и Кельвин

Температура обычно указывается в Кельвинах (K) и, для повседневного использования, измеряется в градусах Цельсия (°C).

Измеряйте правильно

Лучше всего измерять температуру воздуха на высоте примерно 2 м. Также убедитесь, что рядом нет источников тепла или холода, которые могут исказить результат. При измерениях под открытым небом необходимо учитывать солнечное излучение.

Прибор для измерения температуры воздуха с подключением к сети Интернет

Измерение температуры со смартфоном h4>

Смарт-зонды Testo – компактные профессиональные измерительные приборы для самых важных повседневных измерительных задач. У этих приборов нет дисплея, и они полностью управляются через мобильное приложение testo Smart Probes с вашего смартфона. Модель testo 905i (термометр, управляемый со смартфона) идеально подходит для определения температуры воздуха.

Другие преимущества:

testo 905i на нашем сайте h3>

Вам нужно измерить не только температуру воздуха? У нас вы найдете то, что вам нужно.

Тепловизоры

С помощью тепловизоров Testo вы можете измерять температуру поверхности объекта и отображать её в виде инфракрасного изображения. Этот метод позволяет быстро и наглядно определить температурные аномалии. Благодаря этому тепловизор стал идеальным инструментом для технического обслуживания или для строительной отрасли.

Проникающие и погружные термометры

Проникающие термометры и погружные термометры используются, когда нужно измерить температуру внутри объекта или субстанции – в жидкостях, массах, полутвердых или твердых средах. Их применяют в пищевом секторе (для определения температуры внутри продуктов), в лабораториях или в фармацевтической промышленности.


Логгер данных с сенсором температуры воздуха

Логгеры данных температуры были созданы специально для мониторинга температуры. Они измеряют и документируют температуру на складах, в офисах или жилых помещениях с индивидуально настраиваемыми интервалами. Большинство моделей логгеров Testo регистрируют и другие параметры, а также гарантируют сохранность данных даже при разраженной батарее.

Измерение поверхностной температуры

www.testo.ru

модели для измерения температуры воздуха в помещении. Электронный, деревянный и бытовой

Комнатный термометр (электронный, жидкостный, деревянный и бытовой на картонной основе) является необходимым прибором для контроля показателей среды. Модели для измерения температуры воздуха в помещении сегодня могут совмещать свои функции с гигрометрами и контролировать влажность, работать как будильник и электронные часы. Термометр, необходимый для точного определения данных, может подлежать поверке, иметь выносные датчики для выполнения измерений.

Описание

Комнатный термометр — прибор, при помощи которого измеряется температура воздуха внутри помещений. В зависимости от исполнения оборудование может предназначаться для использования исключительно при показателях среды выше 0 градусов. Для помещения без отопления лучше выбирать модели с расширенным температурным диапазоном до −10 или −20 градусов. Они считаются складскими, тогда как обычный прибор классифицируется как бытовой.

Оборудование для измерения температуры воздуха по классификатору ОКПД 2 имеет код 33.20.51.121. В зависимости от исполнения оно может быть механическим или электронным, с проводным и автономным питанием. Жидкостные приборы раньше имели ртутное наполнение, сегодня капилляр заполняется метилкарбитолом или другими безопасными веществами. При поломке изделия не возникает опасности химического отравления – оно полностью безвредно.

По своему применению комнатные термометры не имеют особенных ограничений. Они используются в жилых зданиях: на частных и общественных территориях, в детских и лечебных учреждениях, офисах, на складах. Точность измерения в среднем имеет погрешность от 0,1 до 1 градуса в зависимости от разновидности прибора.

В большинстве случаев образцы этого типа имеют настенное крепление, позволяющее зафиксировать их вдали от прямых солнечных лучей и других источников тепла, на удобном для проверки данных уровне.

Виды

Все существующие комнатные термометры можно поделить на категории согласно типу их исполнения и техническим особенностям. Стоит рассмотреть все варианты более подробно.

Популярные бренды

«Первый термометровый завод»

Единственный официально зарегистрированный производитель бытовых термометров на территории РФ. Предприятие находится в Москве, выпускает широкий спектр продукции.

  1. «Цветок» П-1, П3. Жидкостный домашний термометр. Есть настенное крепление, шкала с делением по 1 градусу. Предназначен исключительно для комнатного применения. В наличии несколько вариантов дизайна.
  2. «Модерн» ТБ-189. Классический комнатный термометр с настенным типом крепления. Основание из полистирола, внутри шкалы находится метилкарбитол (без ртути).
  3. ТБ-206. Деревянный термометр комнатного назначения. Продолжает работу при понижении температуры до −20 градусов.
  4. ТС-70. Недорогая бытовая модель, подходящая для измерения температур в неотапливаемых помещениях. Это жидкостный термометр, относящийся к категории универсальных.

ТСЖ

Фирма выпускает жидкостные термометры с поверкой на 3 года для помещений, холодильных шкафов. Ассортимент продукции довольно велик. Модель ТСЖ-К универсальна, подходит для настенного размещения. Диапазон измеряемых температур варьируется от −10 до +50 градусов. Внутри шкалы термометра находится органическая жидкость, он изготовлен без использования опасных металлов и их соединений.

GamBit

Фирмы выпускает домашние метеостанции, способные не только измерять комнатную температуру, но и контролировать другие показатели внешней среды. Самый популярный вариант — GamBit RX12: с автономным питанием, большим информационным дисплеем, кнопочным управлением. В модели есть встроенные часы, проводной датчик измерения внешней температуры в диапазоне от −50 до +70 градусов, ячейки памяти для сохранения результатов, будильник.

Модель GamBit RX41 еще более функциональна. В ней есть увеличенный по размерам экран, встроенная память, автономное питание. Метеостанция показывает прогноз погоды, лунный календарь, в ней есть часы и будильник, внешний датчик температур, гигрометр.

Правила выбора и эксплуатации

    При выборе комнатного термометра стоит обратить внимание на важные параметры.

    1. Надежность. Современные производители делают свои приборы из ударопрочного стекла. По типу корпуса лучше выбирать самые надежные: дерево, металл, качественный пластик.
    2. Наличие сертификата. Регистрационное удостоверение обычно есть только у термометров, требующих периодической поверки. У остального оборудования погрешность в работе не регламентируется. Если нужен точный контроль за климатическими показателями, лучше не экономить на покупке.
    3. Способ крепления. Настенные, настольные, напольные модели или универсальные варианты — выбор только за покупателем. Если не планируется каждый час сверяться с датчиком температур, хватит и обычного жидкостного с фиксацией к стене. Настольные модели лучше выбирать среди биметаллических или электронных.
    4. Используемая жидкость. Ртутные термометры сегодня не используются в быту. Даже если прибор разбился, достаточно будет просто собрать его содержимое, не опасаясь возможных последствий.
    5. Дизайн. Он тоже имеет большое значение. Стоит выбирать варианты, гармонично вписывающиеся в интерьер, учитывать назначение помещения.

    Правила эксплуатации современных термометров комнатного типа довольно просты. Важно правильно выбрать место для установки прибора: вдали от прямых солнечных лучей и источников повышенной влажности, батарей отопления. Настенные модели размещают исключительно на межкомнатных перегородках, а не на внешних элементах конструкции здания.

    После замены элементов питания, отключения, перемещения точность показателей термометра можно проверять только через 20 минут после манипуляций. Именно столько времени нужно, чтобы оборудование выдало правильные значения.

    Обзор комнатного термометра смотрите далее.

    stroy-podskazka.ru


    Смотрите также