Степень сжатия дизельного двигателя
Степень сжатия дизельного двигателя
В любом автомобиле двигатель является очень сложной системой, и дизельный не исключение. Они состоят из различных механизмов и сложных систем.
Когда происходит взаимодействие всех систем и механизмов, в двигателе образуется энергия, которая преобразуется во время сгорания смеси, образуемой из воздуха и топлива и далее кривошипно-шатунный механизм преобразует поступательно-возвратное движение поршня во вращательное движение коленчатого вала.
Содержание:
- Что такое степень сжатия дизельного двигателя
- Принцип работы
- Разница степени сжатия бензинового и дизельного двигателей
Что такое степень сжатия дизельного двигателя
Степенью сжатия является соотношение между полным объемом цилиндра, когда поршень располагается в нижней мертвой точке (НМТ) и объемом камеры сгорания во время достижения поршнем верхней мёртвой точки (ВМТ).
Такое соотношение показывает разницу в давлении, которое образуется в цилиндре мотора при попадании в него топлива. В документах, которые идут вместе с двигателем, такое соотношение указывается при помощи математических расчетов, например 18:1. Наилучшая степень сжатия в таком двигателе располагается в диапазоне от 18:1 до 22:1.
Принцип работы
В дизельных моторах в процессе сжатия, то есть когда происходит движение поршня к ВМТ, происходит очень быстрое сокращение объёма цилиндра. В итоге в камере сгорания располагается только воздушная масса, именно она сжимается, такой процесс носит название такт сжатия.
Когда к ВМТ подходит поршень, сжатие воздуха происходит на необходимую степень, происходит подача топлива в камеру сгорания под высоким давлением.
Топливо-воздушная смесь при образованном высоком давлении мгновенно воспламеняется и создает повышенное давление в камере, поршень в такой момент как раз проходит ВМТ. Одним из преимуществ дизеля является то, что смесь возгорается только от давления, нет необходимости в сложной и высокоточной системе зажигания. Но роз без шипов не бывает — обратной стороной повышенного давления является особое внимание к герметизации соединений и наличие топливного насоса высокого давления (ТНВД), штуки прецизионной и очень капризной. В процессе сгорания смеси образуется сильное давление, которое начинает давить на поршень и вести его к НМТ. При помощи шатуна все поршневые движения преобразуются во вращение коленчатого вала.
Процесс образования давления при возгорании смеси, которое заставляет передвигаться поршень к НМТ, носит название рабочий ход.
Степень сжатия играет особую роль в такте сжатия. Чем больше степень, тем быстрее и легче воспламеняется смесь, которая полностью сгорает и образует требуемое давление.
Если степень сжатия дизельного двигателя имеет высокий показатель, то она будет создавать высокую мощность при низком заборе топлива. Но у них степень сжатия способна варьироваться в оптимальном диапазоне, который нарушать не стоит, и это не просто так:
- Если образовалась степень сжатия ниже допустимого диапазона, то значительно понижается мощность показателя, а объем потребляемого топлива начнет расти;
- Если образовалась степень сжатия выше необходимого диапазона, то образуется сильная нагрузка на цилиндры и поршни, в результате они быстро изнашиваются.
- Если произошло сильное увеличение степени сжатия, поршень начинает прогорать, а шатун изгибаться.
Зафиксированы случаи, когда при сильном повышении сжатия происходил взрыв всей системы без возможности ее восстановления.
Разница степени сжатия бензинового и дизельного двигателей
Степень сжатия и количество расхода топлива считаются основными показателями в обоих видах двигателей. Так как между сжатием и мощностью существует прямая зависимость.
В двигателях на бензине показатель сжатия находится на отметке 12 единиц, а у дизельных моторов данное число варьируется от 13 до 25 единиц.
Показателем экономичности является удельный расход топлива. Его прямой функцией является определение объема сжигаемого топлива во время работы при мощности 1 кВт за один час.
Бензиновые двигатели за час сжигают около 305 граммов топлива, в то время как дизельные всего 200 граммов.
К тому же у бензиновых моторов существует один существенный недостаток, у них низкая тяга во время работы на холостых оборотах. Очень часто двигатель глохнет, если совершается попытка движения на низких оборотах. А вот у дизельных двигателей такого недостатка нет.
Степень сжатия в двигателе играет очень важную роль, и за этим показателем рекомендуется следить, чтобы мотор работал долгое время, а основные запчасти не изнашивались за короткое время. Вмешиваться в систему, которая создана производителем, нежелательно, но если такая необходимость возникла, то лучше предоставить это дело специалисту.
Читайте также:
avtoshef.com
Степень сжатия — DRIVE2
Термическая эффективность и, следовательно, эффективность, с которой топливо используется для совершения полезной работы, непосредственно связана со степенью сжатия. Чем выше степень сжатия, тем меньше топлива будет использовано для получения той же самой мощности. Типичные значения степеней сжатия от 18:1 до 22:1, используемые в дизельных двигателях, частично объясняют, почему они так эффективно работают. Вдобавок к этому, для полной реализации преимуществ этой высокой степени сжатия, на дизельном двигателе никогда не используется дроссельная заслонка. Другими словами, он всасывает как можно больше воздуха, практически так же, как и бензиновый двигатель при широко открытой дроссельной заслонке. Вместо ограничения количества воздуха, поступающего в двигатель, с помощью дроссельной заслонки мощность двигателя регулируется с помощью изменения количества топлива, впрыскиваемого в цилиндр. Это значит, что даже при низких уровнях мощности (когда в камеру сгорания впрыскивается очень малое количество топлива), дизельный двигатель сжимает воздух в цилиндре очень сильно; при этом выделяется столько тепла, что его достаточно для воспламенения даже очень обедненной смеси. Однако когда дросселируется двигатель с искровым зажиганием (бензиновый двигатель), то количество воздуха, втягиваемого в цилиндры, уменьшается, и так как это эффективная степень сжатия, то в результате топливная эффективность при частично закрытой дроссельной заслонке тоже уменьшается.
Нет сомнений в том, что высокая степень сжатия увеличивает мощность. Изображенная далее схема показывает, что мощность при полном открывании дроссельной заслонки теоретически улучшается при увеличении степени сжатия. Приведенные данные предполагают, что увеличение степени сжатия не создает проблем в других областях, таких как детонация т. д. Вы заметите, что закон уменьшения приводит к довольно простому выводу: когда степень сжатия идет вверх, то при каждом увеличении прирост мощности будет все меньше. К примеру, увеличение компрессии от 8,0:1 до 9,0:1 приводит к большему увеличению мощности, чем увеличение сжатия с 11,0:1 до 12,0:1 (2% роста мощности против 1,3%).
Указанные значения являются типичными для двигателей, использующих распределительные валы с относительно коротким периодом впуска, подобные валам во многих форсированных двигателях. Когда продолжительность такта впуска увеличивается (путем установки распределительного вала с более длительным периодом впуска), прирост мощности от увеличения степени сжатия становится даже больше. Это происходит оттого, что данные базируются на механических степенях сжатия (т.е. определенных путем математических расчетов из фиксированного объема), а не на динамических степенях сжатия, которые продолжают увеличиваться, когда эффективность впуска увеличивается. Когда система впуска модифицируется для улучшения наполнения, то динамическая степень сжатия увеличивается очень похожим образом, как и при увеличении размера поршня, т. к. в цилиндр поступает дополнительное количество воздуха и топлива. Эффективность впуска может продолжать увеличиваться даже до точки «упаковки« цилиндра (объемная эффективность выше 100%), как это предполагается некоторыми комбинациями впускного и выпускного коллекторов. Максимальное давление внутри камеры сгорания перед воспламенением изменяется, когда изменяется плотность подаваемой смеси. Когда система впуска работает с низкой эффективностью, т. е. когда дроссельные заслонки закрыты или впускная система забита, то цилиндр наполняется лишь частично и динамическое давление сжатия низкое. Когда система впуска работает с высокой объемной эффективностью (значение более 100% достигается на многих гоночных двигателях), динамическая степень сжатия может создавать давления, которые превышают давления, ожидаемые от механической (рассчитанной) степени сжатия. В таких случаях увеличение механической степени сжатия может ввести двигатель в режим детонации и уменьшить мощность и надежность двигателя.
Увеличение степени сжатия не всегда приводят к увеличению мощности. Если статическая (подсчитанная) степень сжатия уже находится около предела детонации для используемого топлива, то дальнейшее увеличение статической степени сжатия может ухудшить мощность и/или надежность двигателя. Как ранее упоминалось, это особенно справедливо, когда специальный распределительный вал и системы впуска и выпуска добиваются объемной эффективности (VE) величиной более 100%. Когда (VE) увеличивается, то динамическая степень сжатия также увеличивается, так как цилиндр «упаковывается« смесью так, как если бы работал невидимый нагнетатель.
Другой эффект от увеличения степени сжатия довольно незначителен и неизвестен некоторым создателям двигателей. Когда VE превышает 100%, поступившая смесь находится под небольшим положительным давлением, однако, она может заполнить только пространство в цилиндре плюс пространство в камере сгорания. К примеру, если объем цилиндра и камеры составляет вместе 416,2 см3, то это фиксированное пространство будет в основном определять, сколько топливовоздушной смеси может попасть в цилиндр. Если мы решаем увеличить степень сжатия путем уменьшения объема камеры сгорания или путем увеличения размера выпуклости поршня (это наиболее распространенные методы), то это пространство будет не более названной величины. Да, цилиндр сохраняет постоянный рабочий объем — рабочий объем двигателя не изменялся. Но изменили общий объем цилиндра и камеры сгорания. Это означает, что пространство для поступающей рабочей смеси уменьшается. Таким образом, при увеличении степени сжатия мы почти незаметно уменьшили объемную эффективность двигателя.
Воспользуемся воображаемым примером для уяснения деталей. Представим себе двигатель со степенью сжатия 2,0:1 и, просто ради аргумента скажем, что общий объем (нерабочий объем) одного цилиндра, когда поршень находится в НМТ (нижней мертвой точке), составляет 3.278 см3. Это объем, создаваемый поршнем при одном такте плюс объем камеры сгорания над поршнем, находящимся в положении ВМП (верхней мертвой точке). Так как степень сжатия составляет 2,0:1, то объем над поршнем, находящимся в ВМТ должен составлять половину от общего объема цилиндра или 1.639 см3, (т. е. 1.639 см3 «выбранного« объема плюс 1.639 см3 камеры сгорания равны 3.278 см3 общего объема цилиндра). Даже при 3.278 см3 во всем цилиндре двигатель может втянуть только 1.639 см3 свежей рабочей смеси, т. к. имеется давление в коллекторе у впускного канала (в случае с VE, равной 100%) и только вытесненный объем поршня может работать для втягивания воздуха и топлива. Остальные 1.639 см3 будут заполнены выхлопными газами от последнего цикла сгорания.
Добавим теперь к воображаемому двигателю нагнетатель (компрессор) и отрегулируем давление так, что он будет подавать 3.278 см3 топливовоздушной смесив цилиндр вместо исходных 1.639 см3, которые двигатель мог «вдохнуть« в прежнем состоянии. С нашим нагнетателем в цилиндре будет находиться 3.278, см3 свежей смеси в конце такта впуска и не будет остаточных выхлопных газов. Это существенно улучшит мощность. Но что произойдет, если в безрассудных поисках дополнительной мощности увеличить степень сжатия до 3,0:1, уменьшив объем камеры сгорания над поршнем в ВМТ со1.639 см3 до 1.092 см3? Когда поршень находится в конце такта впуска, общий объем цилиндра будет теперь только 2.731 см3. Если не изменять давление наддува, то оно может «вдавить« только 2.731 см3 топливовоздушной смеси в цилиндр. Это уменьшит объем смеси на 547 см3 или примерно на 17%. Двигатель втягивает менее воспламененную смесь, объемная эффективность уменьшается (на 17%) и мощность снижается. Справедливо то, что 2.731 см3 подаваемой смеси сгорает с более высокой эффективностью благодаря увеличению степени сжатия, но улучшение степени сжатия покрывает только 5% из. 17% потерь мощности.
Многие из вас могут теперь реализовать важные преимущества, получая максимально возможную VE (объемную эффективность). Чем выше VE, которую вы сможете получить, тем ниже будет требуемая степень сжатия; а чем ниже степень сжатия, тем меньше выступ поршня, тем легче фронту пламени распространяться в объеме камеры сгорания. Эти соотношения являются некоторыми из тех методов, которые используют профессионалы для увеличения мощности двигателей.
Верхние пределы степени сжатия и фазы газораспределения распределительного вала достаточно хорошо определены для гоночных двигателей, «обычные« форсированные двигатели для повседневного использования как правило работают при более низких уровнях мощности и в основном при частично открытой дроссельной заслонке. Увеличение степени сжатия может иногда обеспечить заметный прирост мощности, но это же самое увеличение степени сжатия может дать даже большее улучшение топливной экономичности. При увеличении степени сжатия от 8,0:1 до 10,0:1 мощность при полностью открытой дроссельной заслонке может увеличиться на 3 или 4%. Но экономия топлива при частично закрытой дроссельной заслонке может увеличиться более чем на 15%. В этом нет ничего удивительного, если вы помните, что динамическая степень сжатия при частично открытой дроссельной заслонке заметно ниже, чем статическая степень сжатия. Увеличение статической степени сжатия добавляет эффективности в нужном месте: при частично открытой дроссельной заслонке.
Более высокая степень сжатия, конечно, требует использования высокооктанового топлива и часто имеющееся топливо имеет гораздо меньшее октановое число, чем хотелось бы многим. Имеются несколько путей обойти данную проблему. Если вы изготавливаете двигатель с «нуля« и желаете сберечь время, обратившись к инженеру с опытом изготовления форсированных двигателей, вы можете получить рекомендации по увеличению степени сжатия, приводящему к заметному росту мощности двигателя. В некоторых случаях двигатели со степенью сжатия порядка 11:1 успешно использовали бензин с октановым числом 87, но это требует подбора всех деталей двигателя, особенно конструкции распределительного вала и головки блока цилиндров плюс использование системы впрыска воды.
Если вы выберете метод изготовления с «нуля«, одним из самых легких путей увеличения степени сжатия является использование традиционных поршней для высокой степени сжатия, имеющих минимальную высоту куполообразной части, так что нет сильных помех распространению пламени. Если желаемая степень сжатия не может быть достигнута путем плавного увеличения куполообразной части и уменьшением объема камеры сгорания с помощью обработки головки блока (лучше угловая обработка), то лучшим путем для увеличения степени сжатия будет увеличение диаметра отверстия цилиндра, часто с помощью расточки блока. Выдерживая практические пределы для толщины стенок цилиндров (обычно допускается увеличение диаметра отверстия цилиндра не более чем на 0,75 — 1,0 мм), эта модификация может увеличить степень сжатия путем добавления рабочего объема, что уменьшает необходимость больших «куполов« у поршней или камер сгорания меньшего объема.
Если проект вашего двигателя более «умеренный«, то, возможно, будет достаточно обработки головки блока, а стоимость обработки головки составляет одну из самых дешевых операций по увеличению мощности и экономичности двигателя.
www.drive2.ru
Степень сжатия — DRIVE2

• Степень сжатия — отношение полного объёма цилиндра двигателя внутреннего сгорания к объёму камеры сгорания. Степень сжатия дизелей 12-20, карбюраторных двигателей 5-10. Повышение степени сжатия (до определённого предела) увеличивает кпд двигателя.
Эффективность
Термическая эффективность и, следовательно, эффективность, с которой топливо используется для совершения полезной работы, непосредственно связана со степенью сжатия. Чем выше степень сжатия, тем меньше топлива будет использовано для получения той же самой мощности. Типичные значения степеней сжатия от 18:1 до 22:1, используемые в дизельных двигателях, частично объясняют, почему они так эффективно работают. Вдобавок к этому, для полной реализации преимуществ этой высокой степени сжатия, на дизельном двигателе никогда не используется дроссельная заслонка. Другими словами, он всасывает как можно больше воздуха, практически так же, как и бензиновый двигатель при широко открытой дроссельной заслонке. Вместо ограничения количества воздуха, поступающего в двигатель, с помощью дроссельной заслонки мощность двигателя регулируется с помощью изменения количества топлива, впрыскиваемого в цилиндр. Это значит, что даже при низких уровнях мощности (когда в камеру сгорания впрыскивается очень малое количество топлива), дизельный двигатель сжимает воздух в цилиндре очень сильно; при этом выделяется столько тепла, что его достаточно для воспламенения даже очень обеднённой смеси. Однако когда дросселируется двигатель с искровым зажиганием (бензиновый двигатель), то количество воздуха, втягиваемого в цилиндры, уменьшается, и так как это эффективная степень сжатия, то в результате топливная эффективность при частично закрытой дроссельной заслонке тоже уменьшается.
Высокая степень сжатия увеличивает мощность. Приведённые данные предполагают, что увеличение степени сжатия не создаёт проблем в других областях, таких как детонация т. д. Вы заметите, что закон уменьшения приводит к довольно простому выводу: когда степень сжатия идёт вверх, то при каждом увеличении прирост мощности будет всё меньше. К примеру, увеличение компрессии от 8,0:1 до 9,0:1 приводит к большему увеличению мощности, чем увеличение сжатия с 11,0:1 до 12,0:1 (2% роста мощности против 1,3%).
Указанные значения являются типичными для двигателей, использующих распределительные валы с относительно коротким периодом впуска, подобные валам во многих форсированных двигателях. Когда продолжительность такта впуска увеличивается (путём установки распределительного вала с более длительным периодом впуска), прирост мощности от увеличения степени сжатия становится даже больше. Это происходит оттого, что данные базируются на механических степенях сжатия (т.е. определённых путём математических расчётов из фиксированного объёма), а не на динамических степенях сжатия, которые продолжают увеличиваться, когда эффективность впуска увеличивается. Когда система впуска модифицируется для улучшения наполнения, то динамическая степень сжатия увеличивается очень похожим образом, как и при увеличении размера поршня, т. к. в цилиндр поступает дополнительное количество воздуха и топлива. Эффективность впуска может продолжать увеличиваться даже до точки «упаковки« цилиндра (объёмная эффективность выше 100%), как это предполагается некоторыми комбинациями впускного и выпускного коллекторов. Максимальное давление внутри камеры сгорания перед воспламенением изменяется, когда изменяется плотность подаваемой смеси. Когда система впуска работает с низкой эффективностью, т. е. когда дроссельные заслонки закрыты или впускная система забита, то цилиндр наполняется лишь частично и динамическое давление сжатия низкое. Когда система впуска работает с высокой объёмной эффективностью (значение более 100% достигается на многих гоночных двигателях), динамическая степень сжатия может создавать давления, которые превышают давления, ожидаемые от механической (рассчитанной) степени сжатия. В таких случаях увеличение механической степени сжатия может ввести двигатель в режим детонации и уменьшить мощность и надёжность двигателя.
Увеличение степени сжатия не всегда приводят к увеличению мощности. Если статическая (подсчитанная) степень сжатия уже находится около предела детонации для используемого топлива, то дальнейшее увеличение статической степени сжатия может ухудшить мощность и/или надёжность двигателя. Это особенно справедливо, когда специальный распределительный вал и системы впуска и выпуска добиваются объёмной эффективности (VE) величиной более 100%. Когда (VE) увеличивается, то динамическая степень сжатия также увеличивается, так как цилиндр «упаковывается« смесью так, как если бы работал невидимый нагнетатель.
Другой эффект от увеличения степени сжатия довольно незначителен и неизвестен некоторым создателям двигателей. Когда VE превышает 100%, поступившая смесь находится под небольшим положительным давлением, однако, она может заполнить только пространство в цилиндре плюс пространство в камере сгорания. К примеру, если объём цилиндра и камеры составляет вместе 416,2 см3, то это фиксированное пространство будет в основном определять, сколько топливовоздушной смеси может попасть в цилиндр. Если мы решаем увеличить степень сжатия путём уменьшения объёма камеры сгорания или путём увеличения размера выпуклости поршня (это наиболее распространённые методы), то это пространство будет не более названной величины. Да, цилиндр сохраняет постоянный рабочий объём — рабочий объём двигателя не изменялся. Но изменили общий объём цилиндра и камеры сгорания. Это означает, что пространство для поступающей рабочей смеси уменьшается. Таким образом, при увеличении степени сжатия мы почти незаметно уменьшили объёмную эффективность двигателя.
• Пример
Воспользуемся воображаемым примером для уяснения деталей.
Представим себе двигатель со степенью сжатия 2,0:1 и, просто ради аргумента скажем, что общий объём (нерабочий объём) одного цилиндра, когда поршень находится в НМТ (нижней мертвой точке), составляет 3.278 см3. Это объём, создаваемый поршнем при одном такте плюс объём камеры сгорания над поршнем, находящимся в положении ВМП (верхней мертвой точке). Так как степень сжатия составляет 2,0:1, то объём над поршнем, находящимся в ВМТ должен составлять половину от общего объёма цилиндра или 1.639 см3, (т. е. 1.639 см3 «выбранного« объёма плюс 1.639 см3 камеры сгорания равны 3.278 см3 общего объёма цилиндра). Даже при 3.278 см3 во всём цилиндре двигатель может втянуть только 1.639 см3 свежей рабочей смеси, т. к. имеется давление в коллекторе у впускного канала (в случае с VE, равной 100%) и только вытесненный объём поршня может работать для втягивания воздуха и топлива. Остальные 1.639 см3 будут заполнены выхлопными газами от последнего цикла сгорания.
Добавим теперь к воображаемому двигателю нагнетатель (компрессор) и отрегулируем давление так, что он будет подавать 3.278 см3 топливовоздушной смеси в цилиндр вместо исходных 1.639 см3, которые двигатель мог «вдохнуть« в прежнем состоянии. С нашим нагнетателем в цилиндре будет находиться 3.278, см3 свежей смеси в конце и не будет остаточных выхлопных газов. Это существенно улучшит мощность. Но что произойдет, если в безрассудных поисках дополнительной мощности увеличить степень сжатия до 3,0:1, уменьшив объём камеры сгорания над поршнем в ВМТ со1.639 см3 до 1.092 см3? Когда поршень находится в конце такта впуска, общий объём цилиндра будет теперь только 2.731 см3. Если не изменять давление наддува, то оно может «вдавить« только 2.731 см3 топливовоздушной смеси в цилиндр. Это уменьшит объём смеси на 547 см3 или примерно на 17%. Двигатель втягивает менее воспламененную смесь, объёмная эффективность уменьшается (на 17%) и мощность снижается. Справедливо то, что 2.731 см3 подаваемой смеси сгорает с более высокой эффективностью благодаря увеличению степени сжатия, но улучшение степени сжатия покрывает только 5% из. 17% потерь мощности.
• Обобщение
Многие из вас могут теперь реализовать важные преимущества, получая максимально возможную VE (объёмную эффективность). Чем выше VE, которую вы сможете получить, тем ниже будет требуемая степень сжатия; а чем ниже степень сжатия, тем меньше выступ поршня, тем легче фронту пламени распространяться в объёме камеры сгорания. Эти соотношения являются некоторыми из тех методов, которые используют профессионалы для увеличения мощности двигателей.
Верхние пределы степени сжатия и фазы газораспределения распределительного вала достаточно хорошо определены для гоночных двигателей, «обычные» форсированные двигатели для повседневного использования, как правило, работают при более низких уровнях мощности и в основном при частично открытой дроссельной заслонке. Увеличение степени сжатия может иногда обеспечить заметный прирост мощности, но это же самое увеличение степени сжатия может дать даже большее улучшение топливной экономичности. При увеличении степени сжатия от 8,0:1 до 10,0:1, мощность при полностью открытой дроссельной заслонке может увеличиться на 3 или 4%. Но экономия топлива при частично закрытой дроссельной заслонке может увеличиться более чем на 15%. В этом нет ничего удивительного, если вы помните, что динамическая степень сжатия при частично открытой дроссельной заслонке заметно ниже, чем статическая степень сжатия. Увеличение статической степени сжатия добавляет эффективности в нужном месте: при частично открытой дроссельной заслонке.
www.drive2.ru
Сообщества › Diesel Power (Дизельные ДВС) › Блог › Разрушители легенд. Двигатель внутреннего сгорания. Часть №3. Степень сжатия.
На самом деле совершенно не степень сжатия является темой данной статьи. Я несколько раз менял название в ходе написания текста и в конце концов вернулся к первоначальному названию, хотя к тому времени сам почти перестал понимать — что это такое и зачем…
Итак.
Официальная трактовка:
Степень сжатия — отношение полного объёма цилиндра двигателя внутреннего сгорания(надпоршневого пространства цилиндра при положении поршня в нижней мёртвой точке) к объёму "камеры сгорания" (надпоршневого пространства цилиндра при положении поршня в верхней мёртвой точке):

Степень сжатия — чисто геометрическая безразмерная характеристика двигателя.
Поскольку воздух при быстром(адиабатическом) сжатии нагревается — то у двигателя со степенью сжатия 10 давление конца сжатия будет не 10 атмосфер, а около 16. Эта характеристика того же самого двигателя называется компрессия ДАВЛЕНИЕ КОНЦА ТАКТА СЖАТИЯ:


На самом деле давление в ВМТ может быть и больше(если двигатель горячий), а может быть и меньше(если двигатель холодный и сильно изношен или если используются нестандартные фазы ГРМ)…
Как я уже писал в своих предыдущих опусах — сгорание в двигателе происходит на протяжении 50-70 градусов по коленвалу в определённых "климатических" условиях. Поскольку ни СТЕПЕНЬ СЖАТИЯ, ни КОМПРЕССИЯ нам об этих самых "климатических" условиях ничего толком сообщить не могут(хотя бы по той самой элементарной причине, что замеряются они в одной единственной точке на абсолютно неработающем двигателе) — то и оперировать в дальнейшем я буду ДАВЛЕНИЕМ и ТЕМПЕРАТУРОЙ.
Ибо только они показывают что происходит в цилиндре двигателя НА САМОМ ДЕЛЕ.
А НА САМОМ ДЕЛЕ там творится нечто подобное:

Синяя кривая — это давление в цилиндре НЕРАБОТАЮЩЕГО двигателя.
Ромбик в ВМТ — это "компрессия".
Вопрос залу — а что такое эдакое означают ромбики на кривых давления РАБОТАЮЩЕГО двигателя?!
А это есть СУММАРНАЯ "компрессия", которая обеспечивается не только поршневой группой двигателя — но и давлением, создаваемым сгорающим топливом, если это топливо запалить ДО верхней мёртвой точки.
Давление это до ВМТ будет толкать и поршень и коленвал в обратную сторону, ухудшая и без того низкий КПД двигателя — но именно это давление обеспечит топливу те самые ОПТИМАЛЬНЫЕ "климатические" условия, необходимые для его полного и качественного сгорания.
В том или ином виде суммарную "компрессию" повышают и турбокомпрессор, и ЕГР, и оптимальные фазы ГРМ, и всякого рода резонансные впускные коллектора… Не суть.
Давайте повнимательнее рассмотрим все кривые на рисунке.
Чем раньше(в разумных пределах) мы запалим топливо — тем выше будет давление в ВМТ, тем лучше и полнее сгорит топливо и тем больше давления мы получим — и по максимальному значению и по площади.
Не забываем — именно давление выполняет полезную работу!
Проблема заключается только в том, что КРИВОШИПНО-ШАТУННЫЙ МЕХАНИЗМ это ДАВЛЕНИЕ в РАБОТУ в зоне ВМТ преобразовать ЭФФЕКТИВНО не может.
Если обеспечить момент зажигания в той точке, которая обеспечит наилучшее СГОРАНИЕ топлива, то проблем получается аж три.
1). Воспламенение топлива до ВМТ значительно снижает КПД двигателя за счёт того, что выделяемая энергия ТОРМОЗИТ коленвал, пока он не перевалит через ВМТ. Для того чтобы скомпенсировать это торможение и просто выйти по нулям — нужно аннигилировать аналогичную площадь давления газов уже сразу после ВМТ.
Синий график давления самый эффективный по площади, но про жёлтый треугольник давления можно забыть — полезной работы он не создаст:

Забавная ситуация. Самый пик давления и температуры — а вся выделяемая энергия тупо идёт в нагрев двигателя — ибо именно в этот момент осуществляется максимальная теплопередача в стенки "камеры сгорания", а полезного с коленвала снять не получается вообще НИЧЕГО.
ВСЯ выделяющаяся энергия затрачивается из полезного — ТОЛЬКО на обеспечение тех самых, наилучших для сгорания топлива, "климатических условий".
Чтобы избавиться от этого безобразия нужно воспламенять топливо исключительно после ВМТ, но тогда топливо в наших двигателях не успевает сгореть…
2). Воспламенение топлива до ВМТ значительно снижает КПД двигателя и за счёт того, что выделяемая энергия не может эффективно трансформироваться коленвалом до тех пор, пока поршень находится в зоне ВМТ:

Сиреневая кривая — это усилие на коленвалу. То, что остаётся ПОЛЕЗНОГО от давления газов — от синей кривой.
Подробнее про КШМ читайте тут — www.drive2.ru/l/539924806619890409
Чтобы избавиться от этого безобразия нужно обеспечить пик сгорания где-то в районе 50-70 градусов после ВМТ — вот тогда толку от давления сгорающих газов будет в разы больше. Но в существующих ДВС нормальное сгорание на этом отрезке организовать вообще не возможно — так как объём "камеры сгорания" на этом участке уже раза в три-четыре больше, чем в ВМТ, и стремительно увеличивается.
3). Воспламенение топлива до ВМТ обуславливает сгорание бОльшей части топлива в зоне малого изменения объёма камеры сгорания. Полезной работы не производится вообще — и вся энергия сгорающего топлива расходуется исключительно на повышение давления и температуры внутри "камеры сгорания". Ну и на нагрев стенок "камеры сгорания", есстесственно… Если давление и температура превысят некоторый порог — детонационные процессы(которые в "бензиновом" двигателе присутствуют ВСЕГДА) начнут УСПЕВАТЬ развиваться во взрыв.
Если поршень уже интенсивно опускается(а он с каждым градусом по КВ опускается всё быстрее) — то снижение давления в "камере сгорания" детонацию активно подавляет — не даёт развиться новым очагам самовоспламенения. Если поршень вблизи ВМТ и объём "камеры сгорания" увеличивается ещё не интенсивно — то детонация будет максимальна, так как охватит всё невоспламенившееся ещё топливо. Детанационные пики на рисунке — это не набор микровзрывов. Взрыв по сути один — объёмный. Эти пики показывают как детонационная волна мечется по камере сгорания, отражаясь и переотражаясь от стенок и вызывая этим резонансные процессы:

Рисунок рисовали балбесы. Но этот рисунок самый лучший из десятков просмотренных в инэте(мне лень их рисовать самому, сорри) — он хотя бы правильно показывает ГДЕ на кривой расположена детонация в "бензиновом" двигателе.
Чем сильнее детонация — тем быстрее сгорает топливо — тем выше пик общего давления и тем быстрее он спадает.
Детонация плоха двумя вещами:
Первая — это чрезмерные ударные нагрузки, разрушающие двигатель.
Вторая — резкое укорачивание сгорания опять удерживает пик давления в области ВМТ, где эффективное преобразование давления в работу невозможно.
Дросселирование в "бензиновом" двигателе значительно уменьшает суммарную степень сжатия.
"Климатические" условия в камере сгорания рушатся — температура и давление конца такта сжатия значительно снижаются — ВОСПЛАМЕНЕНИЕ значительно ухудшается. Для исправления ситуации приходится делать зажигание всё раньше и раньше — со всеми положительными и отрицательными моментами.
КПД двигателя по мере прикрытия дроссельной заслонки стремительно падает…
.
.
В "дизельном" двигателе ситуация отличается не сильно, но в лучшую сторону:
1). Топливо в "камеру сгорания" поступает дозировано — соответственно нарастанием давления можно худо-бедно управлять. Предвпрыск до ВМТ обеспечивает необходимые "климатические условия" в зоне ВМТ и, самое главное, — пламя. ПЛАМЯ во "всём" объёме "камеры сгорания"!
Потому основной впрыск топлива можно осуществлять после ВМТ — уже в пламя. ВОСПЛАМЕНЕНИЕ свежих порций топлива происходит практически мгновенно.
2). Поскольку смесееобразование осуществляется параллельно со сгоранием — типичная для "бензинового" двигателя детонация не возможна в принципе.
Но попытка впрыскивать топливо слишком интенсивно приводит к тому, что образуются локальные зоны с большим содержанием топлива и зоны, вообще не содержащие топлива — это нарушает смесеобразование.
Ничего хорошего не выходит и при модном нынче у производителей затянутом впрыске — воздушный вихрь делает оборот в камере сгорания и впрыск опять осуществляется в воздушную область, где кислород уже выгорел, потому как туда топливо уже впрыскивалось на предыдущем обороте воздушного вихря.
Интенсивность впрыска топлива в "дизельном" двигателе должна чётко синхронизироваться со складывающейся турбулизацией в камере сгорания. В идеальном случае впрыскивание топлива в камеру сгорания дизеля должно продолжаться ровно столько по времени, за сколько воздушный вихрь совершает один полный оборот.
Это должно неплохо получаться у систем на базе CommonReil — где можно и давлением в рейке манипулировать как угодно и открытием форсунок управлять очень точно…
3). Более высокая по сравнению с "бензиновым" двигателем степень сжатия обуславливает и более высокий КПД "дизельного" двигателя на режиме максимальной мощности, и намного более высокий КПД на режиме холостого хода — ведь дросселирования на "дизельном" двигателе нет.
.
.
К сожалению быстрое и эффективное сгорание топлива в ДВС приводит к образованию окислов азота. Законодательство большинства стран прямо предписывает уменьшение азотистых выбросов из года в год. Но ДЕШЁВОГО и эффективного средства ОЧИСТКИ выхлопных газов от азотистых соединений не придумали до сих пор — потому развитие двигателестроения идёт по пути уменьшения ОБРАЗОВАНИЯ окислов азота.
Основной способ — ЗАМЕДЛЕНИЕ сгорания топлива за счёт снижения предельных температур и давления в камере сгорания. Соответственно современный трэнд развития двигателестроения — снижение степени сжатия.
Тьфу ты… зарёкся же… Снижение того, что принято обзывать степенью сжатия.
А добиться этого можно, как вы уже поняли, многими способами.
www.drive2.ru
степень сжатия — DRIVE2
Степень сжатия — отношение полного объёма
цилиндра двигателя внутреннего сгорания к
объёму камеры сгорания. Степень сжатия
дизелей 12-20, карбюраторных двигателей
5-10. Повышение степени сжатия (до
определённого предела) увеличивает кпд
двигателя.
Эффективность
Термическая эффективность и, следовательно,
эффективность, с которой топливо
используется для совершения полезной
работы, непосредственно связана со степенью
сжатия. Чем выше степень сжатия, тем
меньше топлива будет использовано для
получения той же самой мощности. Типичные
значения степеней сжатия от 18:1 до 22:1,
используемые в дизельных двигателях,
частично объясняют, почему они так
эффективно работают. Вдобавок к этому, для
полной реализации преимуществ этой
высокой степени сжатия, на дизельном
двигателе никогда не используется
дроссельная заслонка. Другими словами, он
всасывает как можно больше воздуха,
практически так же, как и бензиновый
двигатель при широко открытой дроссельной
заслонке. Вместо ограничения количества
воздуха, поступающего в двигатель, с
помощью дроссельной заслонки мощность
двигателя регулируется с помощью изменения
количества топлива, впрыскиваемого в
цилиндр. Это значит, что даже при низких
уровнях мощности (когда в камеру сгорания
впрыскивается очень малое количество
топлива), дизельный двигатель сжимает
воздух в цилиндре очень сильно; при этом
выделяется столько тепла, что его достаточно
для воспламенения даже очень обеднённой
смеси. Однако когда дросселируется двигатель
с искровым зажиганием (бензиновый
двигатель), то количество воздуха,
втягиваемого в цилиндры, уменьшается, и так
как это эффективная степень сжатия, то в
результате топливная эффективность при
частично закрытой дроссельной заслонке тоже
уменьшается.
Высокая степень сжатия увеличивает
мощность. Приведённые данные
предполагают, что увеличение степени сжатия
не создаёт проблем в других областях, таких
как детонация т. д. Вы заметите, что закон
уменьшения приводит к довольно простому
выводу: когда степень сжатия идёт вверх, то
при каждом увеличении прирост мощности
будет всё меньше. К примеру, увеличение
компрессии от 8,0:1 до 9,0:1 приводит к
большему увеличению мощности, чем
увеличение сжатия с 11,0:1 до 12,0:1 (2%
роста мощности против 1,3%).
Указанные значения являются типичными для
двигателей, использующих
распределительные валы с относительно
коротким периодом впуска, подобные валам
во многих форсированных двигателях. Когда
продолжительность такта впуска
увеличивается (путём установки
распределительного вала с более длительным
периодом впуска), прирост мощности от
увеличения степени сжатия становится даже
больше. Это происходит оттого, что данные
базируются на механических степенях сжатия
(т.е. определённых путём математических
расчётов из фиксированного объёма), а не на
динамических степенях сжатия, которые
продолжают увеличиваться, когда
эффективность впуска увеличивается. Когда
система впуска модифицируется для
улучшения наполнения, то динамическая
степень сжатия увеличивается очень похожим
образом, как и при увеличении размера
поршня, т. к. в цилиндр поступает
дополнительное количество воздуха и
топлива. Эффективность впуска может
продолжать увеличиваться даже до точки
«упаковки« цилиндра (объёмная
эффективность выше 100%), как это
предполагается некоторыми комбинациями
впускного и выпускного коллекторов.
Максимальное давление внутри камеры
сгорания перед воспламенением изменяется,
когда изменяется плотность подаваемой
смеси. Когда система впуска работает с низкой
эффективностью, т. е. когда дроссельные
заслонки закрыты или впускная система
забита, то цилиндр наполняется лишь
частично и динамическое давление сжатия
низкое. Когда система впуска работает с
высокой объёмной эффективностью (значение
более 100% достигается на многих гоночных
двигателях), динамическая степень сжатия
может создавать давления, которые
превышают давления, ожидаемые от
механической (рассчитанной) степени сжатия.
В таких случаях увеличение механической
степени сжатия может ввести двигатель в
режим детонации и уменьшить мощность и
надёжность двигателя.
Увеличение степени сжатия не всегда
приводят к увеличению мощности. Если
статическая (подсчитанная) степень сжатия
уже находится около предела детонации для
используемого топлива, то дальнейшее
увеличение статической степени сжатия может
ухудшить мощность и/или надёжность
двигателя. Это особенно справедливо, когда
специальный распределительный вал и
системы впуска и выпуска добиваются
объёмной эффективности (VE) величиной
более 100%. Когда (VE) увеличивается, то
динамическая степень сжатия также
увеличивается, так как цилиндр
«упаковывается« смесью так, как если бы
работал невидимый нагнетатель.
Другой эффект от увеличения степени сжатия
довольно незначителен и неизвестен
некоторым создателям двигателей. Когда VE
превышает 100%, поступившая смесь
находится под небольшим положительным
давлением, однако, она может заполнить
только пространство в цилиндре плюс
пространство в камере сгорания. К примеру,
если объём цилиндра и камеры составляет
вместе 416,2 см3, то это фиксированное
пространство будет в основном определять,
сколько топливовоздушной смеси может
попасть в цилиндр. Если мы решаем
увеличить степень сжатия путём уменьшения
объёма камеры сгорания или путём
увеличения размера выпуклости поршня (это
наиболее распространённые методы), то это
пространство будет не более названной
величины. Да, цилиндр сохраняет постоянный
рабочий объём — рабочий объём двигателя
не изменялся. Но изменили общий объём
цилиндра и камеры сгорания. Это означает,
что пространство для поступающей рабочей
смеси уменьшается. Таким образом, при
увеличении степени сжатия мы почти
незаметно уменьшили объёмную
эффективность двигателя.
Пример
Воспользуемся воображаемым примером для
уяснения деталей.
Представим себе двигатель со степенью
сжатия 2,0:1 и, просто ради аргумента скажем,
что общий объём (нерабочий объём) одного
цилиндра, когда поршень находится в НМТ
(нижней мертвой точке), составляет 3.278 см3.
Это объём, создаваемый поршнем при одном
такте плюс объём камеры сгорания над
поршнем, находящимся в положении ВМП
(верхней мертвой точке). Так как степень
сжатия составляет 2,0:1, то объём над
поршнем, vk.com/autobap находящимся в ВМТ
должен составлять половину от общего
объёма цилиндра или 1.639 см3, (т. е. 1.639
см3 «выбранного« объёма плюс 1.639 см3
камеры сгорания равны 3.278 см3 общего
объёма цилиндра). Даже при 3.278 см3 во
всём цилиндре двигатель может втянуть
только 1.639 см3 свежей рабочей смеси, т. к.
имеется давление в коллекторе у впускного
канала (в случае с VE, равной 100%) и только
вытесненный объём поршня может работать
для втягивания воздуха и топлива. Остальные
1.639 см3 будут заполнены выхлопными
газами от последнего цикла сгорания.
Добавим теперь к воображаемому двигателю
нагнетатель (компрессор) и отрегулируем
давление так, что он будет подавать 3.278 см3
топливовоздушной смеси в цилиндр вместо
исходных 1.639 см3, которые двигатель мог
«вдохнуть« в прежнем состоянии. С нашим
нагнетателем в цилиндре будет находиться
3.278, см3 свежей смеси в конце
[Четырёхтактный двигатель|такта впуска]] и
не будет остаточных выхлопных газов. Это
существенно улучшит мощность. Но что
произойдет, если в безрассудных поисках
дополнительной мощности увеличить степень
сжатия до 3,0:1, уменьшив объём камеры
сгорания над поршнем в ВМТ со1.639 см3 до
1.092 см3? Когда поршень находится в конце
такта впуска, общий объём цилиндра будет
теперь только 2.731 см3. Если не изменять
давление наддува, то оно может «вдавить«
только 2.731 см3 топливовоздушной смеси в
цилиндр. Это уменьшит объём смеси на 547
см3 или примерно на 17%. Двигатель
втягивает менее воспламененную смесь,
объёмная эффективность уменьшается (на
17%) и мощность снижается. Справедливо то,
что 2.731 см3 подаваемой смеси сгорает с
более высокой эффективностью благодаря
увеличению степени сжатия, но улучшение
степени сжатия покрывает только 5% из. 17%
потерь мощности.
Обобщение
Многие из вас могут теперь реализовать
важные преимущества, получая максимально
возможную VE (объёмную эффективность). Чем
выше VE, которую вы сможете получить, тем
ниже будет требуемая степень сжатия; а чем
ниже степень сжатия, тем меньше выступ
поршня, тем легче фронту пламени
распространяться в объёме камеры сгорания.
Эти соотношения являются некоторыми из тех
методов, которые используют профессионалы
для увеличения мощности двигателей.
Верхние пределы степени сжатия и фазы
газораспределения распределительного вала
достаточно хорошо определены для гоночных
двигателей, «обычные» форсированные
двигатели для повседневного использования,
как правило, работают при более низких
уровнях мощности и в основном при частично
открытой дроссельной заслонке. Увеличение
степени сжатия может иногда обеспечить
заметный прирост мощности, но это же самое
увеличение степени сжатия может дать даже
большее улучшение топливной
экономичности. При увеличении степени
сжатия от 8,0:1 до 10,0:1, мощность при
полностью открытой дроссельной заслонке
может увеличиться на 3 или 4%. Но экономия
топлива при частично закрытой дроссельной
заслонке может увеличиться более чем на
15%. В этом нет ничего удивительного, если
вы помните, что динамическая степень сжатия
при частично открытой дроссельной заслонке
заметно ниже, чем статическая степень
сжатия. Увеличение статической степени
сжатия добавляет эффективности в нужном
месте: при частично открытой дроссельной
заслонке.
www.drive2.ru
Степень сжатия дизельного двигателя – что нужно знать? + Видео » АвтоНоватор
Знаете ли вы, как работает сердце вашего автомобиля – двигатель? Какие процессы происходят, когда вы давите на педаль газа или когда переключаете скорости? Не стоит открещиваться от этих знаний – чем лучше вы узнаете свой автомобиль, тем раньше почувствуете возможную неисправность. Одна из важных характеристик – степень сжатия двигателя.
Изучаем теорию – что происходит внутри камеры сгорания?
Степень сжатия в теории – это соотношение объема в пространстве над рабочим поршнем в момент, когда он проходит нижнюю мертвую точку, к объему в камере над поршнем в момент прохождения верхней мертвой точки. Это определение выражает разницу давления в самой камере сгорания в момент, когда происходит впрыск топлива в цилиндр.
В повседневной жизни часто путают степень сжатия с другим понятием, а именно с компрессией дизельного двигателя, однако на практике это два разных термина. Компрессия – это наибольшее давление поршнем в цилиндре на момент его прохождения от нижней мертвой точки к верхней. Эту величину измеряют в атмосферах.
Степень сжатия измеряют математическим соотношением, к примеру, 19:1. Для дизельных двигателей наилучшим считается соотношение в рамках от 18 до 22 к 1. При такой степени сжатия сердце автомобиля будет работать наиболее эффективно. Использование топлива связано напрямую со степенью сжатия. Чем больше давление поднимается в камере и больше сжатие, тем экономичней будет расход топлива, при этом полученная мощность может увеличиваться.
Степень сжатия на практике – как это происходит?
Сгорание топливной смеси в двигателе происходит при взаимодействии смешанных паров топлива и воздуха. При возгорании смеси происходит ее расширение, в результате чего увеличивается давление в камере. Коленчатый вал при этом выполняет обороты, соответственно двигатель выполняет один такт полезной работы. В наше время уже практически не выпускаются дизельные двигатели с низкой степенью сжатия, так как в этом нет необходимости, также и низкооктановое топливо практически исчезло с рынка. Все стремятся к более экономичным и высокооборотистым двигателям с большей степенью сжатия.
Увеличения степени сжатия можно добиться за счет уменьшения камеры сгорания дизельного двигателя. Но при таких изменениях инженерам на заводах приходятся искать компромиссное решение, потому что нужно сохранить давление в камере, а также уменьшить объем сжигания топлива. Одним из способов увеличения сжатия является расточка блоков головки цилиндра – степень сжатия при этом увеличивается, а объем сгорания топлива в камере уменьшается. При этом цилиндр сохраняет свой рабочий объем, и объем двигателя не меняется.
Изменение степени сжатия – как улучшить показатели?
В наше время инженеры нашли альтернативный способ повысить давление в камере сгорания – это установка турбо-нагнетателя. Установка данного устройства приводит к увеличению давления в камере внутреннего сгорания, при этом объемы самой камеры изменять не нужно. Появление подобных устройств привело к существенному увеличению мощности, вплоть до 50 % от изначальных цифр. Достоинством нагнетателей является возможность их установки своими руками, хотя лучше всего поручить эту задачу специалистам.
Принцип работы нагнетателей всех типов сводится к одному простому действию, которое понятно даже детям. Мы знаем, что мотор автомобиля работает благодаря постоянному сгоранию топливно-воздушной смеси, поступающей в цилиндры двигателя. Производители устанавливают оптимальное соотношение поступающих в цилиндры топлива и воздуха – последний попадает в камеру сгорания благодаря созданию разреженной атмосферы на такте впуска. Нагнетатели же позволяют в тот же объем камеры сгорания подать на впуске больше горючего и воздуха. Соответственно, увеличивается количество энергии при сгорании, растет мощность агрегата.
Однако автолюбителям не стоит увлекаться чрезмерным увеличением исходных показателей своего «железного коня» – при возрастании количества тепловой энергии увеличивается и амортизация деталей двигателя.
Быстрее прогорают поршни, изнашиваются клапаны, выходит из строя система охлаждения. Причем если турбонаддув можно установить своими руками, то ликвидировать последствия этого эксперимента далеко не всегда возможно даже в хорошей автомастерской. В особо неудачных случаях модернизации авто его «сердце» может попросту взорваться. Вряд ли нужно объяснять, что страховая компания откажется выплачивать вам какие-либо компенсации по этому прецеденту, возложив всю ответственность исключительно на вас.
В дизельных двигателях отсутствует дроссельная заслонка, в результате этого появилась возможность лучше и эффективней наполнять цилиндры независимо от оборотов. На очень многих современных автомобилях устанавливают такое устройство, как интеркулер. Он позволяет увеличить массу наполнения в цилиндрах на 20 %, что и поднимает мощность двигателя.
Увеличенное давление степени сжатия дизельного двигателя не всегда носит положительный характер и не всегда поднимает его мощность. Рабочая степень сжатия может находиться уже возле своего предела детонации для данного типа топлива, и дальнейшие её увеличение способно снизить мощность и время работы двигателя. В современных автомобилях давление в камере сгорания постоянно находится под управлением и контролем электроники, которая быстро реагирует на изменения работы в двигателе. Прежде, чем выполнить какие-либо операции по увеличению параметров современного «железного коня», обязательно проконсультируйтесь со специалистами.
Мнение эксперта
Руслан Константинов
Эксперт по автомобильной тематике. Окончил ИжГТУ имени М.Т. Калашникова по специальности «Эксплуатация транспортно-технологических машин и комплексов». Опыт профессионального ремонта автомобилей более 10 лет.
Для большинства дизельных двигателей степень сжатия находится в пределе от 18/22 к 1. Подобные характеристики обеспечивают максимальный КПД силовой установки, а если степень сжатия будет увеличена хотя бы на один процент, мощность поднимается минимум на 2%. Кроме использования турбонаддува повысить эти показатели можно и другими способами.
• Система Common Rail.
Современная система, которая используется на большинстве современных автомобилей с дизельной силовой установкой. Принцип заключается в том, что топливная смесь подаётся в камеры сгорания всегда с одинаковым давлением независимо от количества оборотов двигателя и мощности. Если в обычной системе сжатие происходит во впускном коллекторе, то в common rail в момент впрыска топлива в камеру. Благодаря этой системе производительность возрастает на 30%, однако эта цифра может отличаться в зависимости от давления впрыска топлива.
• Чип-тюнинг.
Не менее востребованный способ повышения мощности это чип тюнинг. Принцип доработки заключается в изменении характеристик давления в топливной системе за счёт изменения параметров электронного блока управления двигателем. Чип повышает производительность и КПД мотора, а также отслеживает время подачи топлива в цилиндры. К тому же чип тюнинг позволяет снизить расход топлива и сделать эксплуатацию более экономичной.
Чтобы выполнить чип тюнинг самостоятельно, потребуется специальное оборудование, знания и опыт. Установка доработанного контроллера обязательно подразумевает тонкую настройку под конкретный двигатель, также предварительно необходимо провести диагностику. Поэтому для получения гарантированного результата лучше обратиться к профессионалам.
carnovato.ru
Степень сжатия. — DRIVE2

Степень сжатия — отношение полного объёма цилиндра двигателя внутреннего сгорания к объёму камеры сгорания. Степень сжатия дизелей 12-20, карбюраторных двигателей 5-10. Повышение степени сжатия (до определённого предела) увеличивает кпд двигателя.
Эффективность
Термическая эффективность и, следовательно, эффективность, с которой топливо используется для совершения полезной работы, непосредственно связана со степенью сжатия. Чем выше степень сжатия, тем меньше топлива будет использовано для получения той же самой мощности. Типичные значения степеней сжатия от 18:1 до 22:1, используемые в дизельных двигателях, частично объясняют, почему они так эффективно работают. Вдобавок к этому, для полной реализации преимуществ этой высокой степени сжатия, на дизельном двигателе никогда не используется дроссельная заслонка. Другими словами, он всасывает как можно больше воздуха, практически так же, как и бензиновый двигатель при широко открытой дроссельной заслонке. Вместо ограничения количества воздуха, поступающего в двигатель, с помощью дроссельной заслонки мощность двигателя регулируется с помощью изменения количества топлива, впрыскиваемого в цилиндр. Это значит, что даже при низких уровнях мощности (когда в камеру сгорания впрыскивается очень малое количество топлива), дизельный двигатель сжимает воздух в цилиндре очень сильно; при этом выделяется столько тепла, что его достаточно для воспламенения даже очень обеднённой смеси. Однако когда дросселируется двигатель с искровым зажиганием (бензиновый двигатель), то количество воздуха, втягиваемого в цилиндры, уменьшается, и так как это эффективная степень сжатия, то в результате топливная эффективность при частично закрытой дроссельной заслонке тоже уменьшается.
Высокая степень сжатия увеличивает мощность. Приведённые данные предполагают, что увеличение степени сжатия не создаёт проблем в других областях, таких как детонация т. д. Вы заметите, что закон уменьшения приводит к довольно простому выводу: когда степень сжатия идёт вверх, то при каждом увеличении прирост мощности будет всё меньше. К примеру, увеличение компрессии от 8,0:1 до 9,0:1 приводит к большему увеличению мощности, чем увеличение сжатия с 11,0:1 до 12,0:1 (2% роста мощности против 1,3%).
Указанные значения являются типичными для двигателей, использующих распределительные валы с относительно коротким периодом впуска, подобные валам во многих форсированных двигателях. Когда продолжительность такта впуска увеличивается (путём установки распределительного вала с более длительным периодом впуска), прирост мощности от увеличения степени сжатия становится даже больше. Это происходит оттого, что данные базируются на механических степенях сжатия (т.е. определённых путём математических расчётов из фиксированного объёма), а не на динамических степенях сжатия, которые продолжают увеличиваться, когда эффективность впуска увеличивается. Когда система впуска модифицируется для улучшения наполнения, то динамическая степень сжатия увеличивается очень похожим образом, как и при увеличении размера поршня, т. к. в цилиндр поступает дополнительное количество воздуха и топлива. Эффективность впуска может продолжать увеличиваться даже до точки «упаковки« цилиндра (объёмная эффективность выше 100%), как это предполагается некоторыми комбинациями впускного и выпускного коллекторов. Максимальное давление внутри камеры сгорания перед воспламенением изменяется, когда изменяется плотность подаваемой смеси. Когда система впуска работает с низкой эффективностью, т. е. когда дроссельные заслонки закрыты или впускная система забита, то цилиндр наполняется лишь частично и динамическое давление сжатия низкое. Когда система впуска работает с высокой объёмной эффективностью (значение более 100% достигается на многих гоночных двигателях), динамическая степень сжатия может создавать давления, которые превышают давления, ожидаемые от механической (рассчитанной) степени сжатия. В таких случаях увеличение механической степени сжатия может ввести двигатель в режим детонации и уменьшить мощность и надёжность двигателя.
Увеличение степени сжатия не всегда приводят к увеличению мощности. Если статическая (подсчитанная) степень сжатия уже находится около предела детонации для используемого топлива, то дальнейшее увеличение статической степени сжатия может ухудшить мощность и/или надёжность двигателя. Это особенно справедливо, когда специальный распределительный вал и системы впуска и выпуска добиваются объёмной эффективности (VE) величиной более 100%. Когда (VE) увеличивается, то динамическая степень сжатия также увеличивается, так как цилиндр «упаковывается« смесью так, как если бы работал невидимый нагнетатель.
Другой эффект от увеличения степени сжатия довольно незначителен и неизвестен некоторым создателям двигателей. Когда VE превышает 100%, поступившая смесь находится под небольшим положительным давлением, однако, она может заполнить только пространство в цилиндре плюс пространство в камере сгорания. К примеру, если объём цилиндра и камеры составляет вместе 416,2 см3, то это фиксированное пространство будет в основном определять, сколько топливовоздушной смеси может попасть в цилиндр. Если мы решаем увеличить степень сжатия путём уменьшения объёма камеры сгорания или путём увеличения размера выпуклости поршня (это наиболее распространённые методы), то это пространство будет не более названной величины. Да, цилиндр сохраняет постоянный рабочий объём — рабочий объём двигателя не изменялся. Но изменили общий объём цилиндра и камеры сгорания. Это означает, что пространство для поступающей рабочей смеси уменьшается. Таким образом, при увеличении степени сжатия мы почти незаметно уменьшили объёмную эффективность двигателя.
Пример
Воспользуемся воображаемым примером для уяснения деталей.
Представим себе двигатель со степенью сжатия 2,0:1 и, просто ради аргумента скажем, что общий объём (нерабочий объём) одного цилиндра, когда поршень находится в НМТ (нижней мертвой точке), составляет 3.278 см3. Это объём, создаваемый поршнем при одном такте плюс объём камеры сгорания над поршнем, находящимся в положении ВМП (верхней мертвой точке). Так как степень сжатия составляет 2,0:1, то объём над поршнем, находящимся в ВМТ должен составлять половину от общего объёма цилиндра или 1.639 см3, (т. е. 1.639 см3 «выбранного« объёма плюс 1.639 см3 камеры сгорания равны 3.278 см3 общего объёма цилиндра). Даже при 3.278 см3 во всём цилиндре двигатель может втянуть только 1.639 см3 свежей рабочей смеси, т. к. имеется давление в коллекторе у впускного канала (в случае с VE, равной 100%) и только вытесненный объём поршня может работать для втягивания воздуха и топлива. Остальные 1.639 см3 будут заполнены выхлопными газами от последнего цикла сгорания.
Добавим теперь к воображаемому двигателю нагнетатель (компрессор) и отрегулируем давление так, что он будет подавать 3.278 см3 топливовоздушной смеси в цилиндр вместо исходных 1.639 см3, которые двигатель мог «вдохнуть« в прежнем состоянии. С нашим нагнетателем в цилиндре будет находиться 3.278, см3 свежей смеси в конце [Четырёхтактный двигатель|такта впуска]] и не будет остаточных выхлопных газов. Это существенно улучшит мощность. Но что произойдет, если в безрассудных поисках дополнительной мощности увеличить степень сжатия до 3,0:1, уменьшив объём камеры сгорания над поршнем в ВМТ со1.639 см3 до 1.092 см3? Когда поршень находится в конце такта впуска, общий объём цилиндра будет теперь только 2.731 см3. Если не изменять давление наддува, то оно может «вдавить« только 2.731 см3 топливовоздушной смеси в цилиндр. Это уменьшит объём смеси на 547 см3 или примерно на 17%. Двигатель втягивает менее воспламененную смесь, объёмная эффективность уменьшается (на 17%) и мощность снижается. Справедливо то, что 2.731 см3 подаваемой смеси сгорает с более высокой эффективностью благодаря увеличению степени сжатия, но улучшение степени сжатия покрывает только 5% из. 17% потерь мощности.
Обобщение
Многие из вас могут теперь реализовать важные преимущества, получая максимально возможную VE (объёмную эффективность). Чем выше VE, которую вы сможете получить, тем ниже будет требуемая степень сжатия; а чем ниже степень сжатия, тем меньше выступ поршня, тем легче фронту пламени распространяться в объёме камеры сгорания. Эти соотношения являются некоторыми из тех методов, которые используют профессионалы для увеличения мощности двигателей.
Верхние пределы степени сжатия и фазы газораспределения распределительного вала достаточно хорошо определены для гоночных двигателей, «обычные» форсированные двигатели для повседневного использования, как правило, работают при более низких уровнях мощности и в основном при частично открытой дроссельной заслонке. Эта статья опубликована в паблике Auto. Если вы видите ее в другом сообществе, значит ленивые администраторы нагло берут материал у нас и даже не читают его. Увеличение степени сжатия может иногда обеспечить заметный прирост мощности, но это же самое увеличение степени сжатия может дать даже большее улучшение топливной экономичности. При увеличении степени сжатия от 8,0:1 до 10,0:1, мощность при полностью открытой дроссельной заслонке может увеличиться на 3 или 4%. Но экономия топлива при частично закрытой дроссельной заслонке может увеличиться более чем на 15%. В этом нет ничего удивительного, если вы помните, что динамическая степень сжатия при частично открытой дроссельной заслонке заметно ниже, чем статическая степень сжатия. Увеличение статической степени сжатия добавляет эффективности в нужном месте: при частично открытой дроссельной заслонке.
www.drive2.ru
Степень сжатия дизельного двигателя – как увеличить параметры? — e-fee.ru
Степень сжатия дизельного двигателя – как увеличить параметры?Знаете ли вы, как работает сердце вашего автомобиля – двигатель? Какие процессы происходят, когда вы давите на педаль газа или когда переключаете скорости? Не стоит открещиваться от этих знаний – чем лучше вы узнаете свой автомобиль, тем раньше почувствуете возможную неисправность.
Изучаем теорию – что происходит внутри камеры сгорания?
Степень сжатия в теории – это соотношение объема в пространстве над рабочим поршнем в момент, когда он проходит нижнюю мертвую точку, к объему в камере над поршнем в момент прохождения верхней мертвой точки. Это определение выражает разницу давления в самой камере сгорания в момент, когда происходит впрыск топлива в цилиндр.
Фото камеры сгорания дизельного двигателя,
В повседневной жизни часто путают степень сжатия с другим понятием, а именно с компрессией дизельного двигателя, однако на практике это два разных термина. Компрессия – это наибольшее давление поршнем в цилиндре на момент его прохождения от нижней мертвой точки к верхней. Эту величину измеряют в атмосферах.
На фото - дизельный двигатель,
Степень сжатия измеряют математическим соотношением, к примеру, 19:1. Для дизельных двигателей наилучшим считается соотношение в рамках от 18 до 22 к 1. При такой степени сжатия сердце автомобиля будет работать наиболее эффективно. Использование топлива связано напрямую со степенью сжатия. Чем больше давление поднимается в камере и больше сжатие, тем экономичней будет расход топлива, при этом полученная мощность может увеличиваться.
Степень сжатия на практике – как это происходит?
Сгорание топливной смеси в двигателе происходит при взаимодействии смешанных паров топлива и воздуха. При возгорании смеси происходит ее расширение, в результате чего увеличивается давление в камере. Коленчатый вал при этом выполняет обороты, соответственно двигатель выполняет один такт полезной работы. В наше время уже практически не выпускаются дизельные двигатели с низкой степенью сжатия, так как в этом нет необходимости, также и низкооктановое топливо практически исчезло с рынка. Все стремятся к более экономичным и высокооборотистым двигателям с большей степенью сжатия.
Фото принципа сжатия в двигателе,
Увеличения степени сжатия можно добиться за счет уменьшения камеры сгорания дизельного двигателя. Но при таких изменениях инженерам на заводах приходятся искать компромиссное решение, потому что нужно сохранить давление в камере, а также уменьшить объем сжигания топлива. Одним из способов увеличения сжатия является расточка блоков головки цилиндра – степень сжатия при этом увеличивается, а объем сгорания топлива в камере уменьшается. При этом цилиндр сохраняет свой рабочий объем, и объем двигателя не меняется.
Изменение степени сжатия – как улучшить показатели?
В наше время инженеры нашли альтернативный способ повысить давление в камере сгорания – это установка турбо-нагнетателя. Установка данного устройства приводит к увеличению давления в камере внутреннего сгорания, при этом объемы самой камеры изменять не нужно. Появление подобных устройств привело к существенному увеличению мощности, вплоть до 50 % от изначальных цифр. Достоинством нагнетателей является возможность их установки своими руками, хотя лучше всего поручить эту задачу специалистам.
Принцип работы нагнетателей всех типов сводится к одному простому действию, которое понятно даже детям. Мы знаем, что мотор автомобиля работает благодаря постоянному сгоранию топливно-воздушной смеси, поступающей в цилиндры двигателя. Производители устанавливают оптимальное соотношение поступающих в цилиндры топлива и воздуха – последний попадает в камеру сгорания благодаря созданию разреженной атмосферы на такте впуска. Нагнетатели же позволяют в тот же объем камеры сгорания подать на впуске больше горючего и воздуха. Соответственно, увеличивается количество энергии при сгорании, растет мощность агрегата.
Однако автолюбителям не стоит увлекаться чрезмерным увеличением исходных показателей своего «железного коня» – при возрастании количества тепловой энергии увеличивается и амортизация деталей двигателя.
Быстрее прогорают поршни, изнашиваются клапаны, выходит из строя система охлаждения. Причем если турбонаддув можно установить своими руками, то ликвидировать последствия этого эксперимента далеко не всегда возможно даже в хорошей автомастерской. В особо неудачных случаях модернизации авто его «сердце» может попросту взорваться. Вряд ли нужно объяснять, что страховая компания откажется выплачивать вам какие-либо компенсации по этому прецеденту, возложив всю ответственность исключительно на вас.
В дизельных двигателях отсутствует дроссельная заслонка, в результате этого появилась возможность лучше и эффективней наполнять цилиндры независимо от оборотов. На очень многих современных автомобилях устанавливают такое устройство, как интеркулер. Он позволяет увеличить массу наполнения в цилиндрах на 20 %, что и поднимает мощность двигателя.
Увеличенное давление степени сжатия дизельного двигателя не всегда носит положительный характер и не всегда поднимает его мощность. Рабочая степень сжатия может находиться уже возле своего предела детонации для данного типа топлива, и дальнейшие её увеличение способно снизить мощность и время работы двигателя. В современных автомобилях давление в камере сгорания постоянно находится под управлением и контролем электроники, которая быстро реагирует на изменения работы в двигателе. Прежде, чем выполнить какие-либо операции по увеличению параметров современного «железного коня», обязательно проконсультируйтесь со специалистами.


e-fee.ru
Компрессия и степень сжатия дизельного двигателя
Двигатель любого автомобиля, в том числе и дизельный, является довольно сложным устройством, состоящим из механизмов и систем.
Взаимодействие этих систем и механизмов между собой позволяет преобразовывать энергию, возникающую при сгорании топливно-воздушной смеси во вращательное движение кривошипно-шатунного механизма с дальнейшей передачей вращения на трансмиссию.
Основная работа по преобразованию энергии происходит внутри цилиндро-поршневой группы, а именно в цилиндрах.
Преобразование энергии зависит от многих факторов, среди которых степень сжатия двигателя и компрессия. Особенно эти понятия играют более важную роль в дизельных силовых установках, поскольку воспламенение горючей смеси в цилиндрах этого агрегата производятся за счет сжатия смеси.
Понятие степени сжатия
Зачастую эти понятия путают между собой или объединяют в один термин. В действительности это два разных термина, и характеризуются они по-разному.
Сначала разберем все о степени сжатия дизельного мотора.
Соотношение объема цилиндра двигателя в момент нахождения поршня в нижней мертвой точке (НМТ) к объему камеры сгорания в момент, когда поршень достегает верхней мертвой точки и есть степень сжатия двигателя.
Степень сжатия
Данное соотношение указывает на разницу давления, возникающую в цилиндре двигателя в тот момент, когда в цилиндр поступает топливо.
В технической документации, идущей вместе с дизельной силовой установкой, степень сжатия указывается в виде математического соотношения, к примеру — 18:1.
Для дизельного агрегата самой оптимальной степень сжатия варьируется в диапазоне от 18:1 до 22:1. Именно при таких показателях у этого двигателя достигаются максимальные показатели эффективности.
Как все работает
У дизельного мотора при такте сжатия, когда поршень движется к ВМТ, объем в цилиндре быстро сокращается. В этот момент в камере сгорания находиться только воздух, он-то и сжимается, данный процесс называется тактом сжатия.
При подходе поршня к ВМТ, воздух сжимается на указанную в документации степень сжатия, в камеру сгорания под давлением подается топливо.
Смесь из топлива и воздуха из-за воздействия на нее высокого давления воспламеняется, значительно увеличивая давление внутри камеры, поршень в этот момент проходит ВМТ.
Образовавшееся в результате сгорания топливовоздушной смеси высокое давление начинает давить на днище поршня, заставляя его двигаться к НМТ.
Посредством шатуна поступательное движение поршня преобразовывается во вращательное движение колен. вала.
В данном случае давление, возникшее в результате воспламенения смеси, заставляет двигаться поршень к НМТ называется рабочим ходом. Рабочий ход является одним из тактов работы цилиндро-поршневой группы.
При такте сжатия как раз и важна степень сжатия. Чем она выше, тем более легче воспламениться горючая смесь и в более полной мере она сгорит, обеспечив большее давление.
При хорошем показателе степени сжатия дизельный мотор будет обеспечивать больший выход мощности при меньшем количестве сгораемого топлива.
Однако у дизельных силовых установок не зря имеется диапазон степени сжатия, за который выходить не рекомендуется.
Степень сжатия меньше 18:1 приводит к снижению мощностного показателя установки, при этом потребление топлива увеличивается.
Но и чрезмерная степень сжатия у мотора тоже сказывается нехорошо на двигателе, особенно дизельном. За счет увеличенных нагрузок, которые испытывают цилиндропоршневая группа, их ресурс очень быстро сокращается.
Увеличение сверх нормы степени сжатия может привести к прогоранию поршня, изгибу шатуна.
Прогорел поршень
В некоторых случаях увеличение данного показателя приводит к взрыву силовой установки без возможности последующего восстановления.
Возможность замера степени сжатия
Проверить степень сжатия дизельного агрегата в гаражных условиях практически невозможно. Поскольку нужно проводить некоторые замеры, которые сделать очень сложно.
Одним из таких замеров является выяснение объема в цилиндре при нахождении поршня в ВМТ.
Далее нужно знать некоторые параметры силовой установки, часть из которых можно узнать из тех. документации, но некоторые узнать довольно сложно.
Для вычисления степени сжатия потребуется знать объем камеры сгорания, поскольку между блоком цилиндров находиться прокладка, то нужно знать ее толщину и диаметр поршневого отверстия в ней, ход поршня и диаметр цилиндра.
Имея все эти данные, а также произведя замеры объема в цилиндре, можно математическим путем провести вычисления степени сжатия.
Способы повышения показателя
Замерить степень сжатия на дизельном двигателе сложно, а вот изменить данный показатель в лучшую сторону – можно.
Есть несколько способов увеличения показателей степени сжатия на дизельном агрегате.
Уменьшаем камеру сгорания двигателя.
Самым простым способом увеличения данного показателя является уменьшение камеры сгорания.
Поскольку степень сжатия – это соотношение объема цилиндра к объему камеры сгорания, то изменив объем одного можно поменять и сам показатель соотношения.
Уменьшить объем камеры сгорания можно несколькими путями. Первое, что можно сделать – это заменить прокладку между блоком и головкой двигателя на более тонкую, за счет этого и измениться объем камеры сгорания. Прокладка между блоком и головкой двигателя Дополнительно можно провести торцевание головки блока цилиндров. В этом случае с головки блока снимается слой металла, из-за чего и уменьшается камера сгорания. Использование турбированного нагнетателя. Вторым способом изменения данного показателя является увеличение давления в камере сгорания. Применение такого устройства, как турбинный нагнетатель, он же турбонаддув, позволяет увеличить степень сжатия. В дизельных силовых установках, не имеющих данного устройства, воздух, требуемый для создания горючей смеси, подается за счет разрежения в цилиндре, возникающего при такте впуска. При такой подаче воздуха в цилиндры высокое давление на такте сжатия обеспечить в полной мере невозможно, поскольку количество воздуха получатся ограниченным. турбонаддув При использовании нагнетателя воздух в цилиндры подается принудительно. Это обеспечивает подачу большего количества воздуха, и как следствие большего давления в цилиндре при такте сжатия.Читайте по теме: , что лучше.
Интеркулер. Часто на дизельных моторах, помимо нагнетателя применяется еще одно устройство – интеркулер. Он также позволяет увеличить давление в цилиндре, но по несколько иному принципу, чем нагнетатель. Интеркулер В задачу входит охлаждение воздуха перед подачей его в цилиндры. Приводит это к тому, что при охлаждении плотность воздуха увеличивается, а значит и давление в цилиндре будет выше. Это основная информация, что касается степени сжатия. Перейдем к компрессии.Понятие компрессии
Компрессия – это показатель давления в цилиндрах двигателя. Измеряться данный показатель может в нескольких величинах – кг/см кв., Барах, Атмосферах, Паскалях. Особое внимание заслуживает компрессия дизельного двигателя, так как данный показатель очень важен в дизельных моторах. У дизеля компрессия должна быть порядка 22 Атм., хотя на разных двигателях может быть и больше, при этом значительно. Высокая компрессия в цилиндрах дизеля должна обеспечиваться потому, что воспламенение горючей смеси производиться именно из-за высокого давления. Что такое компрессия двигателя Если данный показатель на дизеле будет значительно меньше нормы, запуск мотора – затруднителен или невозможен. Компрессия дизельного двигателя в цилиндре достигается путем сжатия воздуха поршнем при такте сжатия. Но полной герметичности внутри цилиндра добиться просто невозможно, всегда будет утечка воздуха. Воздух частично может прорываться через изношенные компрессионный кольца, когда они уже не могут обеспечить должное прилегание к цилиндру, часть воздушной массы может выходить из цилиндра через неплотное прилегание клапанов к седлам. Если говорить в общем, то показатель компрессии указывает на состояние двигателя. Сильное несоответствие компрессии двигателя от заданных норм всегда указывает на сильный износ механизмов силовой установки. Поэтому входит в комплекс диагностических работ двигателя.Как замерить компрессию
В отличие от степени сжатия провести замеры компрессии двигателя не особо сложно. Для проведения данных работ достаточно иметь компессометр или компрессограф. Принцип действия этих двух приборов одинаков, разница лишь в выводе информации. У компрессометра значение давления указывается на шкале манометра. компрессометр У компрессографа же информация о давлении в цилиндре заносится на какой-либо носитель информации или же просто на бумагу. компрессограф Последовательность проверки компрессии в дизельном двигателе такова:- С одного цилиндра снимается форсунка, на ее место устанавливается прибор;
- Затем производится проворот коленвала стартером и записывается полученный результат;
- После проверяется компрессия во всех остальных цилиндрах;
- Затем значения, полученные во всех цилиндрах, сверяются.
От чего зависит компрессия
Как уже сказано, компрессия дизельного двигателя, и не только его, а всех силовых установок, зависит от состояния цилиндро-поршневой группы и газораспределительного механизма. Но помимо этого компрессия двигателя еще и зависит от количества оборотов коленвала. Чем ниже его обороты, тем больше времени у воздуха, находящегося внутри цилиндра найти место, где он может выйти из нее. Поэтому при замере компрессии важно проследить о том, чтобы стартер обеспечил хотя минимальных 20-250 оборотов колен. вала в минуту. Иначе показания компрессометра не будут соответствовать реальному значению данного показателя. Износ двигателя Это конечно, не все факторы, влияющие на компрессию, но перечисленные являются одними из основных.Особенности запуска дизельного двигателя
Но высокая компрессия дизельного двигателя, которой обеспечивается работоспособность силовой установки, играет не на руку легкости пуска. Конечно, если двигатель хорошо прогреется, стартеру не составит труда обеспечить должные обороты коленвала, и как следствие должное давление в камере сгорания и запуск силовой установки. У холодного же мотора появляется несколько дополнительных факторов, усложняющих запуск. Одним из таких факторов является повышенное трение между узлами и механизмами у холодного двигателя, поскольку масляной прослойки между ними нет. А если к данному фактору у дизельной установки добавить еще и слабую компрессию, из-за которой воспламенение рабочей смеси затруднительно, поскольку давления в камере сгорания недостаточно, то пуск мотора очень затруднителен. Поэтому чем ниже температура и слабее компрессия дизельного двигателя, тем меньше шансов его запустить. И это еще не рассмотрена такая особенность дизельного топлива, как парафинированние его при низких температурах.portalvaz.ru
Степень сжатия дизельного двигателя – как увеличить параметры?
Знаете ли вы, как работает сердце вашего автомобиля – двигатель? Какие процессы происходят, когда вы давите на педаль газа или когда переключаете скорости? Не стоит открещиваться от этих знаний – чем лучше вы узнаете свой автомобиль, тем раньше почувствуете возможную неисправность.
Изучаем теорию – что происходит внутри камеры сгорания?
Степень сжатия в теории – это соотношение объема в пространстве над рабочим поршнем в момент, когда он проходит нижнюю мертвую точку, к объему в камере над поршнем в момент прохождения верхней мертвой точки. Это определение выражает разницу давления в самой камере сгорания в момент, когда происходит впрыск топлива в цилиндр.
В повседневной жизни часто путают степень сжатия с другим понятием, а именно с компрессией дизельного двигателя, однако на практике это два разных термина. Компрессия – это наибольшее давление поршнем в цилиндре на момент его прохождения от нижней мертвой точки к верхней. Эту величину измеряют в атмосферах.
Степень сжатия измеряют математическим соотношением, к примеру, 19:1. Для дизельных двигателей наилучшим считается соотношение в рамках от 18 до 22 к 1. При такой степени сжатия сердце автомобиля будет работать наиболее эффективно. Использование топлива связано напрямую со степенью сжатия. Чем больше давление поднимается в камере и больше сжатие, тем экономичней будет расход топлива, при этом полученная мощность может увеличиваться.
Степень сжатия на практике – как это происходит?
Сгорание топливной смеси в двигателе происходит при взаимодействии смешанных паров топлива и воздуха. При возгорании смеси происходит ее расширение, в результате чего увеличивается давление в камере. Коленчатый вал при этом выполняет обороты, соответственно двигатель выполняет один такт полезной работы. В наше время уже практически не выпускаются дизельные двигатели с низкой степенью сжатия, так как в этом нет необходимости, также и низкооктановое топливо практически исчезло с рынка. Все стремятся к более экономичным и высокооборотистым двигателям с большей степенью сжатия.
Увеличения степени сжатия можно добиться за счет уменьшения камеры сгорания дизельного двигателя. Но при таких изменениях инженерам на заводах приходятся искать компромиссное решение, потому что нужно сохранить давление в камере, а также уменьшить объем сжигания топлива. Одним из способов увеличения сжатия является расточка блоков головки цилиндра – степень сжатия при этом увеличивается, а объем сгорания топлива в камере уменьшается. При этом цилиндр сохраняет свой рабочий объем, и объем двигателя не меняется.
Изменение степени сжатия – как улучшить показатели?
В наше время инженеры нашли альтернативный способ повысить давление в камере сгорания – это установка турбо-нагнетателя. Установка данного устройства приводит к увеличению давления в камере внутреннего сгорания, при этом объемы самой камеры изменять не нужно. Появление подобных устройств привело к существенному увеличению мощности, вплоть до 50 % от изначальных цифр. Достоинством нагнетателей является возможность их установки своими руками, хотя лучше всего поручить эту задачу специалистам.
Принцип работы нагнетателей всех типов сводится к одному простому действию, которое понятно даже детям. Мы знаем, что мотор автомобиля работает благодаря постоянному сгоранию топливно-воздушной смеси, поступающей в цилиндры двигателя. Производители устанавливают оптимальное соотношение поступающих в цилиндры топлива и воздуха – последний попадает в камеру сгорания благодаря созданию разреженной атмосферы на такте впуска. Нагнетатели же позволяют в тот же объем камеры сгорания подать на впуске больше горючего и воздуха. Соответственно, увеличивается количество энергии при сгорании, растет мощность агрегата.
Однако автолюбителям не стоит увлекаться чрезмерным увеличением исходных показателей своего «железного коня» – при возрастании количества тепловой энергии увеличивается и амортизация деталей двигателя.
Быстрее прогорают поршни, изнашиваются клапаны, выходит из строя система охлаждения. Причем если турбонаддув можно установить своими руками, то ликвидировать последствия этого эксперимента далеко не всегда возможно даже в хорошей автомастерской. В особо неудачных случаях модернизации авто его «сердце» может попросту взорваться. Вряд ли нужно объяснять, что страховая компания откажется выплачивать вам какие-либо компенсации по этому прецеденту, возложив всю ответственность исключительно на вас.
В дизельных двигателях отсутствует дроссельная заслонка, в результате этого появилась возможность лучше и эффективней наполнять цилиндры независимо от оборотов. На очень многих современных автомобилях устанавливают такое устройство, как интеркулер. Он позволяет увеличить массу наполнения в цилиндрах на 20 %, что и поднимает мощность двигателя.
Увеличенное давление степени сжатия дизельного двигателя не всегда носит положительный характер и не всегда поднимает его мощность. Рабочая степень сжатия может находиться уже возле своего предела детонации для данного типа топлива, и дальнейшие её увеличение способно снизить мощность и время работы двигателя. В современных автомобилях давление в камере сгорания постоянно находится под управлением и контролем электроники, которая быстро реагирует на изменения работы в двигателе. Прежде, чем выполнить какие-либо операции по увеличению параметров современного «железного коня», обязательно проконсультируйтесь со специалистами.
autotuning116.ru
Познавательно — Степень сжатия и компрессия — DRIVE2
Многие путают или сравнивают «степень сжатия» и «компрессию» – это совсем разные понятия!

такты двигателя
И так по порядку:
1. Степень сжатия двигателя – это соотношение общего объема одного цилиндра двигателя к объему камеры сгорания этого же цилиндра. Измеряется в килограммах на квадратный сантиметр.
2.Компрессия — это максимальное давление воздуха в камере сгорания в конце такта сжатия.
Начнем со степени сжатия — что же это такое?
Итак, соотношение общего объема цилиндра – означает общая вместимость цилиндра в нижней мертвой точке поршня (НМТ) (когда поршень находится внизу). В поршень подается воздушно-топливная смесь (когда поршень внизу) и полностью заполняет цилиндр. Для примера, двигатель N объемом 1500 куб.см, если разделить на 4 поршня получается – 1500/4=375 куб.см. Так вот это объем одного цилиндра.
Получаем НМТ = 375
Объем камеры сгорания – это уже не общий объем, а объем камеры сгорания, когда поршень в цилиндре находится в верхней точке (ВМТ), в этом положении он максимально сжимает топливо (простыми словами поршень находится вверху). А этот объем уже намного меньше общего объема цилиндра, например у того же двигателя N объем камеры сгорания равен всего 37 куб.см
Получаем ВМТ = 37
И для того, чтобы вычислить степень сжатия двигателя – делим общий объем поршня НМТ (для двигателя N – 375 куб.см), на объем камеры сгорания ВМТ (для двигателя N – 37 куб.см), выходит ( по формуле ε = v1/v2, где ε степень сжатия, а v1 и v2 соответственно НМТ и ВМТ ) 375/37 = 10,13 кг/см2, ε = 10 ( рис. 12.2. )

Степень сжатия
При этом у дизельных двигателей степень сжатия больше, оно колеблется от 18 до 22 кг/см2. Причем у дизельных двигателей нет свечей зажигания, там воспламенение происходит благодаря давлению – то есть при таком давлении, топливо само по себе воспламеняется.
Стоит также отметить, что степень сжатия двигателя является постоянной величиной, в отличии от компрессии.
Со степенью сжатия разобрались, но тогда что такое компрессия?
Компрессия – это максимальное давление в цилиндре, возникающее в самом конце такта сжатия. Величина этого давления может измеряться в различных единицах, но наибольшее распространение получило измерение в атмосферах.Напоминаю, что компрессия не является постоянной величиной и изменяется в меньшую сторону по мере его износа.
Величина этого давления, в конце такта, для каждой модели двигателя индивидуальна и зависит от его объема

Компрессия, в конце такта сжатия
Рассчитываем компрессию
компрессия — зависит от степени сжатия
рассчитываем компрессию
компрессия = ε*n
где n = 1,2-1,3 ( для четырехтактных двигателей, бензин )
Теперь рассчитываем компрессию для нашего двигателя N
компрессия = ε*n
10 * 1.2 = 12 при n равной 1.2, 10 * 1.3 = 13 при n равной 1.3
И так мы получаем что для нашего двигателя N, компрессия должна быть ~ от 12 до 13
В итоге мы получаем двигатель N со степенью сжатия равной 10 кг/см2 и компрессией от 12 до 13 кг/см2.
Как мы выяснили, степень сжатия и компрессия — это совсем два разных понятия и их не стоит путать.
И если у вашего двигателя компрессия ниже от тех значений которые должны быть, стоит задуматься о его ремонте.
Надеюсь для кого-то будет полезным
www.drive2.com