Система питания на сжатом газе
Устройство системы питания двигателей газовым топливом.
Система питания двигателя от газобаллонной установки
Устройство и работа газобаллонных установок
Газобаллонные установки характеризуются тем, что топливо при любом агрегатном состоянии вытекает из баллонов под значительным давлением. Поэтому в этих системах питания нет насосов, перекачивающих и подающих топливо, но введен редуктор, который позволяет снижать давление газа до рабочего, которое должно быть примерно равно атмосферному давлению или несколько превышать его.
При работе на сжатом газе исходное давление в баллонах составляет 20 МПа и более, поэтому эту систему питания оснащают баллонами высокого давления. По мере расхода газа давление в баллонах снижается.
При работе на сжиженном газе давление в баллоне не превышает 1,6…2,0 МПа. Баллоны этих установок относятся к баллонам низкого давления. Давление в них изменяется только в зависимости от состава газовой смеси и от температуры окружающей среды.
При любом количестве жидкого газа в баллоне давление в нем всегда будет равно давлению насыщенных паров топлива для условий окружающей среды. Давление насыщенных паров основных компонентов сжиженного нефтяного газа (СНГ) пропана и бутана при изменении температуры от -40 до +40 ˚С изменяется от 0,12 до 1,7 и от 0,18 до 0,39 соответственно.
В обоих случаях в системе предусматривается фильтр для улавливания твердых частичек (окалины и др.) и теплообменник, размещаемый отдельно или в общем корпусе с редуктором. Для сжиженного газа теплообменник служит испарителем на выходе из баллона, а для сжатого – подогревателем.
Подогреватель необходим в системе сжатого газа, так как резкое снижение давления в процессе его расширения на выходе из баллона приводит к значительному понижению температуры, и при наличии влаги в газе может привести к ее замерзанию и нарушению нормальной работы системы вследствие закупоривания магистральных трубок льдом.
Для подогрева сжатого газа обычно используют тепло отработавших газов, пропускаемых через теплообменное устройство, а для подогрева сжиженного газа чаще всего используют жидкость из системы охлаждения двигателя.
***
Устройство и работа газобаллонной установки
для сжатого газа
Принципиальная схема газобаллонной установки для работы на сжатом газе показана на рис. 1.
Установка для грузового автомобиля с пятью баллонами, сгруппированными в две секции I и II, размещаемыми обычно под платформой кузова. Каждая секция снабжена соединительной арматурой 2 с трубками 3 и расходным вентилем 4, что позволяет расходовать из них газ порознь и одновременно.
Из баллонов 1 по трубкам 3 и через расходные вентили 4 газ поступает в подогреватель 6, в который через дозирующую шайбу 8 из приемной трубы 7 поступают горячие отработавшие газы. Далее через магистральный вентиль 9 и фильтр 10 газ проходит в одноступенчатый редуктор 11, где давление его снижается до 1,2 МПа, и через второй фильтр 12 в двухступенчатый редуктор 13 с понижением давления почти до атмосферного.
При работающем двигателе газ засасывается в карбюратор-смеситель, причем на режиме холостого хода по трубке 21 он поступает непосредственно в задроссельное пространство и впускной трубопровод 15, который связан трубкой 14 с разгрузочным (пусковым) устройством редуктора.
Система снабжена двумя манометрами: высокого давления 23, включаемого до магистрального вентиля, и низкого 22, фиксирующего давление первой ступени редуктора. По показаниям первого манометра судят о количестве газа в баллонах, а по показаниям второго – о работе редуктора.
Так как автомобильные газобаллонные установки всегда предусматривают возможность питания двигателя и традиционным топливом, то и в рассматриваемой схеме обеспечено питание как газовым топливом, вводимым форсункой 20 в проставку 17, т. е. в зону между диффузором карбюратора и дроссельной заслонкой, так и жидким, вводимым в диффузор распылителем 18. Баллоны наполняются газом через вентиль 5.
***
Устройство и работа газобаллонной установки
для сжиженого газа
На рисунке 2 приведена схема газобаллонной установки грузового автомобиля ГАЗ-53-07, работающего на сжиженном газе.
Из баллона 7 через расходные вентили 6 (для паровой фазы) или 12 (для жидкой фазы), магистральный вентиль 5 и расходные трубки сжиженный газ поступает в испаритель 4, подогреваемый жидкостью из системы охлаждения двигателя.
Далее газ в паровой фазе проходит через сетчатый фильтр 3 и двухступенчатый редуктор 2, откуда засасывается в газовый смеситель 15.
Пуск и прогрев двигателя осуществляется только на паровой фазе, которую отбирают из баллонов через вентиль 6.
Газовый баллон 7 емкостью 170 л размещается под грузовой платформой автомобиля. Заполняют его через вентиль 10 до уровня, фиксируемого с помощью контрольного вентиля 9, а текущий запас топлива оценивают по указателю уровня 11.
Баллон оснащен предохранительным клапаном 8, срабатывающим в случае превышения давления сверх допустимого, равного 1,6 МПа.
Магистральный вентиль 5 и контрольные манометры 13 и 14 размещают в кабине водителя на контрольном щитке.
Запас жидкого топлива рассчитывают на кратковременную работу двигателя и хранят в бензобаке 1, который используют в случае отказа газовой аппаратуры или для поездки до ближайшей заправочной газовой станции. С этой целью двигатель оснащают однокамерным карбюратором.
Таким образом, питание газового двигателя бензином может осуществляться с помощью обычного базового карбюратора-смесителя с газовой проставкой или отдельного карбюратора упрощенной конструкции.
***
Узлы и приборы газобаллонных установок
k-a-t.ru
Система питания газовых двигателей. Грузовые автомобили. Система питания
Система питания газовых двигателей
Переведя автомобиль на газовое топливо можно сэкономить более дорогой и дефицитный бензин. Газовое топливо более экологически чистое, от его сгорания выделяется меньше токсических веществ в атмосферу. Существенным недостатком газового топлива является его низкая объемная теплота сгорания.
Для газовых двигателей применяют сжиженные (нефтяные ) газы, которые находятся в баллонах под давлением до 1.57 МПа, и сжатые (природные), которые находятся под давление до 19.6 МПа. Газовое топливо храниться в емкостях из стали или алюминиевых сплавов. Сжиженное топливо получило более широкое применение в автомобилях. В газовых двигателях, также как и в двигателях работающих на жидком топливе, может быть осуществлено внешнее или внутреннее смесеобразование. Для работы на сжатых и сжиженных газах применяют автомобили с карбюраторными двигателями, однако некоторые двигатели специально приспосабливают для работы только на газовом топливе. Рабочий цикл двигателя, работающего на газовом топливе, такой же как и у двигателя работающего на бензине, однако работа узлов и агрегатов системы при этом существенно отличается.
В двигателях с внешним смесеобразованием без наддува, газ поступает к смесительным устройствам под давлением, приблизительно близким к атмосферному, в этом случае предотвращается утечка газа во внешнюю среду и проникновение воздуха в газопровод. При избыточном давлении происходит утечка газа, а в случае наличия разрежения в газопроводе, образуется горючая смесь из газа и воздуха, может привести к взрыву. В двигателях с любым смесеобразованием с наддувом газ подводится к газовому клапану под давлением, несколько превышающим давление наддува, также происходит в двигателях с внутренним смесеобразованием без наддува. В стационарных газовых двигателях для поддержания постоянного давление, перед смесительными органами устанавливают регулятор давления газа, который автоматически поддерживает нужное давление, для работы двигателя.
Для снижения давления газа перед смесительными устройствами, устанавливают редуктор. Этот прибор тоже регулирует давление газа и отличается от регуляторов давления газа, только более высокой степенью снижения давления газа. Встречаются одно, двух и многоступенчатые редукторы, в зависимости от числа элементов, в которых происходит последовательное снижение давления газа. Редуктор также препятствует поступлению газа к смесителю при неработающем двигателе.
Рассмотрим устройство и принцип работы системы питания на сжиженном газе на примере автомобилей семейства ЗИЛ.
Рис. Схема газобаллонной установки на сжиженном газе.
1 – карбюратор, 2 – трубопровод. 3 – трубопровод подвода газа из редуктора в смеситель, 4 – трубопровод подвода газа нахолостом ходу, 5 – манометр низкого давления, 6 – кран для слива отстоя или воды в холодное время года, 7 и 8 – трубопроводы для подвода и отвода жидкости из системы охлаждения, 9 – магистральный вентиль (в кабине водителя), 10 – заправочный вентиль для жидкого газа, 11 – указатель уровня газа в баллоне, 12 и 13 – расходные вентили жидкой и парообразной фаз газа, 14 – предохранительный клапан.Сжиженный газ из баллона, через расходный вентиль 12, клапан – фильтр, испаритель и газовый фильтр поступает к редуктору. Редуктор регулирует давление и через трубопроводы подает его в смеситель. Воздух подается сверху, через патрубок газового смесителя, который вместе с поступившим в смеситель газом, образует газовоздушную смесь, поступающую потом через впускную трубу в цилиндры двигателя. Редуктор низкого давления .
Рис. Схема работы двухступенчатого редуктора.
А – при закрытом магистральном вентиле, б – во время пуска и работы двигателя, 1 и 10 – мембраны второй и первой ступеней, 2, 9 – пружины второй и первой ступеней, 3 – коническая пружина, 4 – обратный клапан, 5 – дроссельная заслонка, 6 и 8 – двухплечие рычаги второй и первой ступеней, 7 и 11 – клапаны второй и первой ступеней, 12 – мембрана разгрузочного устройства, 13 – дозатор-экономайзер, 14 и 19 – трубопроводы для газа, 15 – воздушный фильтр, 16 – смесительная камера, 17 – впускной трубопровод, 18 – вакуумный трубопровод, 20 – предохранительный клапан, I – первая ступень редуктора, II – вторая ступень редуктора, А – атмосферная полость, Б – вакуумная полость, В – полость экономайзерного устройства.Каждая ступень, двухступенчатого мембранно – рычажного редуктора имеет клапаны 7 и 11, пружину 3, двуплечие рычаги 6 и 8, которые соединяют шарнирно мембрану с клапаном.
Клапан первой ступени находится в открытом положении под действием пружины 9 и мембраны 10, двуплечего рычага 8, давление в полости первой ступени I, остается постоянным и равным атмосферному при неработающем двигателе и закрытом расходном вентиле.
Клапан II, второй ступени, при неработающем двигателе, находится в закрытом положении и плотно прижат к седлу пружинами конической и цилиндрической через двуплечий рычаг 6.
Если включен электромагнитный клапан и открыт расходный вентиль газ поступает в полость первой ступени редуктора. Мембрана 1, преодолевает усилие пружины 3, прогибается и через рычаг 6, закрывает клапан 7. Давление газа в полости первой ступени регулируется изменением усилия пружины 2 в пределах гайки 0,16….0,18 МПа. Манометр, по которому контролируется уровень давления, расположен в кабине водителя.
Когда дроссельные заслонки полуоткрыты (рис. б), при запуске двигателя и его работе на средних нагрузках, под дроссельными заслонками создается вакуум, который передается в полость В экономайзера. Под вакуумом мембраны вакуумного разгрузочного устройства прогибается вниз и сжимает коническую пружину3, разгружая клапан 7 второй ступени. Клапан из первой ступени открывается, преодолевает сопротивление цилиндрической пружины 2 мембраны 1. Газ заполняет полость второй ступени, поступает в смеситель по трубопроводу 19.
При полном открытии дроссельных заслонок, вакуум в смесительной камере 16 становится достаточным для открытия обратного клапана 4 и газ начинает поступать дополнительно через дозатор – экомайзер 13.При увеличении подачи газа через воздухопровод 14 и 19, газовоздушная смесь обогащается и мощность двигателя увеличивается.
Газовый смеситель служит для получения горючей смеси в газобаллонных автомобилях. Существенным отличием такого автомобиля от карбюраторного является то, что подача топлива осуществляется в одинаковом с воздухом агрегатном состоянии, отсюда конструкция газового смесителя намного проще карбюратора. Такие смесители могут быть как отдельной конструкцией, так и выполненными совместно с карбюратором.
Наличие карбюратора-смесителя не говорит о том, что такой автомобиль не может работать на бензине.
Испаритель сжиженного газа предназначен для преобразования жидкого топлива в газообразное состояние. Изготавливается испаритель из алюминия и состоит из двух частей. Внутренние полости испарителя обогреваются за счет жидкости из системы охлаждения двигателя, которая подогревает газ движущийся по каналам.
Электромагнитный клапан – фильтр служит для очистки газа от механических примесей. Очищенный газ затем поступает через испаритель в редуктор и далее в смеситель.
Система питания на природном газе – это установка высокого давления. Баллоны соединены последовательно трубопроводами, заполняются такие баллоны на газозаправочных станциях, через наполнительный вентиль. Давление сжатого газа в баллонах и редукторе контролируют посредством манометров.
К недостаткам, автомобилей, работающих на газобаллоном топливе стоит отнести уменьшенную на величину массы баллонов грузоподъемность автомобилей, а также его повышенная пожароопасность. Данный текст является ознакомительным фрагментом.Читать книгу целиком
Поделитесь на страничкеСледующая глава >
tech.wikireading.ru
ЛЕКЦИЯ № 8 Тема: «Система питания газовых двигателей»
План занятия
1. Организационный момент – 3 мин.
2. Опрос студентов по предыдущему материалу – 10 мин.
3. Изложение нового материала – 55 мин.
4. Закрепление нового материала -12 мин.
5. Подведение итогов – 7 мин.
6. Задание на дом – 3 мин.
Итого: 90 мин.
Оборудование занятия:
– Мультимедиа, компьютер, DVD – диски;
– Слайды, плакаты;
– Учебные элементы;
Опрос (фронтальный)
Вопросы:
Ø Каково устройство и работа ограничителя максимальной частоты вращения коленчатого вала?
Ø Каков принцип работы системы рециркуляции отработавших газов?
Ø Назначение системы выпуска отработавших газов.
Ø Принципы нейтрализации отработавших газов.
Изложение нового материала
Лекция № 8
Закрепление нового материала:
(проводится фронтальный опрос по изложенной теме)
Ø Разбираем правильность ответов.
Ø Выставляем оценки, комментарий;
Задание на дом:
Ø Заполнить тетрадь для лабораторных работ по пройденной теме.
Ø Повторить пройденный материал.
Ø Не забываем про конструкторские разработки.
(Конспект лекции № 8)
Газовыми называются карбюраторные двигатели, работающие на газообразном топливе — сжатых и сжиженных газах. Особенностью газовых двигателей является их способность работать также и на бензине. Система питания газовых двигателей имеет специальное газовое оборудование. Имеется также дополнительная резервная система, обеспечивающая при необходимости работу газового двигателя на бензине.
По сравнению с карбюраторными газовые двигатели более экономичны, менее токсичны, работают без детонаций, имеют более полное сгорание топлива и меньший износ деталей, срок их службы больше в 1,5—2 раза. Однако их мощность меньше на 10… 20 %, так как в смеси с воздухом газ занимает больший объем, чем бензин. У них более сложная система питания и сложное обслуживание в эксплуатации, требующее высокой техники
безопасности.
Топливо для газовых двигателей
Сжиженными называются газы, которые превращаются в жидкость при нормальной температуре и давлении до 1,6 МПа (16 кгс/см2).
Сжатыми называются газы, которые сохраняют газообразное состояние при обычных температурах окружающего воздуха и при сжатии их до любого высокого давления. Как правило, давление сжатия достигает 20 МПа (200 кгс/см2).
Сжатые газы. Такие газы разделяются на природные (естественные), нефтяные и канализационные.
Природные (естественные) газы добывают из буровых газовых скважин. Природные газы однородны по составу, в большинстве случаев не содержат загрязняющих и вредных примесей, обладают высокими антидетонационными свойствами и дешевы.
Нефтяные газы получают в качестве побочного продукта при добыче нефти, переработке нефти на нефтеперегонных и крекинговых заводах, а также при производстве бензина из нефтяного газа на газолиновых заводах. Нефтяные газы менее однородны по составу и более загрязнены примесями, чем природные газы. Их теплотворность выше теплотворности природных газов, так как они содержат больше тяжелых газов.
Канализационные газы выделяются при переработке сточных вод канализации на специальных станциях, имеющихся в крупных, городах. Эти газы состоят главным образом из метана и углекислого газа. Выход канализационного газа со станции переработки сточных вод, обслуживающей население в 100 000 чел., достигает 2500 м3 в сутки, что заменяет 2000 л бензина. Применение вместо бензина сжатого природного газа благодаря его огромным запасам и небольшой стоимости целесообразно, особенно на внутригородских и пригородных перевозках. Однако невысокое значение объемной теплоты сгорания сжатого газа по сравнению с сжиженным газом не позволяет обеспечить хранение на автомобиле достаточного количества газа даже при высоком давлении. Вследствие этого запас хода газобаллонных автомобилей, работающих на сжатом природном газе, примерно вдвое меньше, чем у автомобилей, работающих на сжиженном газе, баллоны которого к тому же имеют значительно меньшую массу. Поэтому для газобаллонных автомобилей использование сжиженных газов предпочтительнее, чем сжатого.
Сжиженные газы. В состав сжиженных, или жидких, газов, применяемых для автомобильных двигателей, входят бутан и пропан с добавлением бутилена, пропилена, этана и этилена. Величина давления сжиженного газа имеет важное практическое значение. С одной стороны, давление в баллоне желательно иметь низким, так как при этом можно применять более тонкостенные, а, следовательно, и более легкие баллоны. С другой стороны, давление сжижен-
ного газа в баллоне при любой температуре должно быть достаточным для обеспечения подачи топлива к двигателю и работы газовой аппаратуры.
Пропан (а также пропилен) обеспечивает удовлетворительную величину давления в баллоне при любых климатических условиях. Бутан в чистом виде пригоден лишь для районов с жарким климатом, так как при температуре воздуха ниже 00 С он уже не обеспечивает избыточного давления в баллоне.
Этан применяется в сжиженных газах в виде незначительных примесей для повышения давления.
Основными производителями сжиженных газов являются:
· газолиновые заводы, вырабатывающие бензин из нефтяных газов; выход сжиженного газа составляет до 50% от производства бензина;
· крекинг-заводы, на которых сжиженные газы получают в качестве побочного продукта в количестве до3% по весу от исходного сырья;
· заводы, вырабатывающие бензин из каменного угля; выход сжиженного газа доходит до 10 – 12% от веса основной продукции.
Основные требования предъявляемые к сжиженным газам:
· соответствие их состава климатическим условиям;
· строго ограниченное содержание загрязняющих и вредных примесей.
При самых низких температурах воздуха давление в баллоне со сжиженным газом не должно быть ниже 0,2 МПа (2 кгс/см2), при самых высоких – не более 1,6 МПа (16 кгс/см2). Предельное содержание сернистых соединений составляет 0,15 %. Газ не должен содержать воды, механических примесей, водорастворимых кислот, щелочей и смолистых веществ.
Сравнение сжиженных и сжатых газов. Как высококалорийные сжатые газы, так и сжиженные бутано-пропановые газы являются высококачественным топливом для автомобильных двигателей. Однако сжиженные газы обладают существенными преимуществами перед сжатыми газами:
· значительно более низкое рабочее давление (до 1,6 МПа против 20 МПа), что позволяет применять более легкие и дешевые баллоны и газопроводы;
· возможность перевозки в железнодорожных и автомобильных цистернах на любые расстояния; перевозка сжатых газов практически не осуществляется;
· более дешевые и простые газозаправочные устройства, не требующие сложного оборудования; заправка баллонов сжатым газом возможна лишь на газонаполнительных станциях, снабженных компрессорами высокого давления;
· увеличенная дальность поездок и большая полезная грузоподъемность газобаллонных автомобилей, работающих на сжиженных газах.
Сжатые газы, в свою очередь, имеют преимущества перед сжиженными:
· это дешевый, часто малоиспользуемый вид местного топлива; сжиженные газы, наоборот, являются более дорогим продуктом, применяемым при производстве ряда ценных химических веществ, высокосортных бензинов, в бытовых целях и др.;
· источники природных и промышленных газов расположены в самых различных районах страны, что позволяет значительно сократить доставку жидкого топлива в эти регионы; станции заправки сжиженными газами менее распространены.
Для автомобильного транспорта целесообразно использование как сжиженных, так и сжатых газов, в зависимости от наличия местных источников газа и от возможности организации газоснабжения.
Преимущества газового топлива по сравнению с бензином.
К числу преимуществ горючих газов перед бензином следует отнести:
· более лёгкое и полное перемешивание топлива с воздухом;
· более равномерное распределение топлива по отдельным цилиндрам двигателя;
· полное отсутствие разжижения картерного масла топливом и смывания масляной пленки со стенок цилиндров;
· уменьшение нагара на поршнях, клапанах и стенках камеры сгорания;
· меньшая ядовитость отработавших газов вследствие более полного сгорания топлива, чем при работе на бензине;
· значительное уменьшение износа деталей цилиндропоршневой группы двигателя;
· высокие антидетонационные свойства газообразного топлива и связанная с этим возможность значительно повысить степень сжатия в двигателе, что повышает мощность и снижает расход топлива.
Недостатки горючих газов как топлива для автомобильных двигателей.
В качестве топлива для автомобильных двигателей горючие газы имеют следующие недостатки:
· усложнение и удорожание системы топливоподачи, так как газовые баллоны с их арматурой, газопроводы и газовая аппаратура сложнее по конструкции, дороже и тяжелее, чем бензобак, бензопроводы и бензонасос;
· снижение мощности при переводе бензинового двигателя на таз без всяких переделок. Это обусловлено более низкой теплопроводностью газовоздушной смеси по сравнению с бензиновоздушной смесью и ухудшением наполнения цилиндров двигателя вследствие более высокой температуры горючей смеси во впускном трубопроводе.
Температура горючей смеси при работе на газе на 15..200С выше, чем при работе, на бензине, так как на испарение бензина в карбюраторе и впускном трубопроводе затрачивается некоторое количество теплоты.
При одинаковом составе горючей смеси теплотворность газовоздушной смеси для всех видов газов, за исключением окиси углерода, ниже теплотворности бензиновоздушной смеси: для природного газа на 9 %, для коксового газа на 10 %, для сжиженных газов на 2…3 %.
Подогрев впускного трубопровода, необходимый при работе на бензине, вреден при работе на всех видах газов, так как вызывает снижение мощности на 4… 6 %.
По пусковым качествам при температуре окружающего воздуха не ниже – 5 °С газовые двигатели не отличаются от бензиновых. При более низких температурах пуск холодного двигателя вызывает затруднения. Кроме того, к недостаткам применения газового топлива по сравнению с бензином относится худшее массовое наполнение цилиндров, снижение скорости горения смеси и меньшее выделение теплоты при ее сгорании. В результате этого мощность двигателя в зависимости от вида применяемого газа уменьшается на 7… 10 % при такой же степени сжатия, как у карбюраторных двигателей. Поэтому увеличение мощности газовых двигателей достигается обычно путем повышения их степени сжатия. Так, если у бензинового двигателя ЗИЛ-508 степень сжатия 7,1, то у его газовой модификации – 8,2; у бензинового двигателя ЗМЗ-511 – 7,6, а у его газовой модификации – 8,7.
Газобаллонные установки для работы на сжиженных и сжатых газах.
Для работы на сжиженных и сжатых газах обычно используют серийные автомобили, на которых устанавливают газобаллонные установки для работы на СНГ или СПГ. Основными моделями \ автомобилей, работающих на сжиженном нефтяном газе, являются грузовые автомобили ГАЗ-33075, ГАЗель-320210, – 320211, ЗИЛ-431810, – 441610, переоборудованные легковые автомобили ГАЗ-3102; – 31105, автобусы ЛиАЗ-677Г, а на сжатом природном газе – автомобили ГАЗ-33076, – 53-27, ЗИЛ-431610, – 431710, ЗИЛ – ММЗ-45054, автобусы ЛиАЗ-677МГ. Рабочий цикл двигателей этих автомобилей такой же, как и у карбюраторных, но их системы питания имеют принципиальное различие, так как процесс смесеобразования осуществляется с помощью специальной газоподающей аппаратуры. Для грузовых автомобилей и легковых автомобилей-такси типа ГАЗ-3102 «Волга» газовые приборы и арматуру выпускает Рязанский завод автомобильной аппаратуры, а для легковых автомобилей семейств ВАЗ, «ГАЗель» – Новогрудский завод газовой аппаратуры (НЗГА).
В газобаллонных автомобилях, работающих на сжиженном газе, имеются газовая и бензиновая системы питания. Газовая система питания является основной и предназначена для выполнения транспортной работы. Она обеспечивает запас хода газобаллонных автомобилей в пределах 375… 420 км. В закрепленных на рамах этих автомобилей баллонах газ находится одновременно в двух агрегатных состояниях: в жидкой и газообразной фазах. Баллоны для СНГ рассчитаны на избыточное давление 1,6 МПа, а минимальное давление газа в них, при котором сохраняется работоспособность газовой аппаратуры и двигателя, должно быть в пределах 0,06… 0,08 МПа. Особенность газовой аппаратуры, работающей на СНГ, заключается в том, что рабочее давление зависит не от объема газа в баллоне, а от его компонентного состава и температуры наружного воздуха.
Бензиновая система питания является резервной и предназначена для пуска двигателя в холодное время и передвижения автомобиля на небольшие расстояния (15…25 км) в случаях полного расходования газа или отказа газового оборудования. При работе двигателя на резервной системе питания его мощность значительно ниже мощности, получаемой при работе на газовом топливе.
Газобаллонные автомобили, работающие на СПГ, выполнены по универсальной схеме, т.е. эффективно могут работать как, на сжатом газе, так и на бензине. Использование двух систем питания позволяет увеличить запас хода автомобилей и расширить сферы их применения.
В отличие от газобаллонных установок, работающих на СНГ, в установках СПГ рабочее давление газа в баллоне изменяется по мере его расходования от максимального (20 МПа) до давления, близкого к атмосферному.
Газобаллонные установки для работы на СНГ грузовых автомобилей. Установки для работы на сжиженном газе грузовых автомобилей семейств ЗИЛ и ГАЗ (рис.35) включают в себя баллон 11 для хранения газа с двумя расходными вентилями (вентиль 12 предназначен для отбора жидкой фазы газа, а вентиль 10 — паровой фазы), магистральный вентиль 8, испаритель 23, двухступенчатый редуктор 2 с фильтром 4, магистральный фильтр 3, смеситель 14 с воздушным фильтром 19 и проставкой 15.
Рис. 36 Схема газобаллонной установки для работы на СНГ грузов автомобилей семейства ЗИЛ и ГАЗ
Газобаллонные установки СНГ грузовых автомобилей семейства ЗИЛ отличаются от установок СНГ грузовых автомобилей семейства ГАЗ в основном тем, что у первых газовый редуктор расположен на двигателе, а у вторых — на передней стенке кабины под капотом.
При пуске и прогреве двигателей газобаллонных автомобилей их питание осуществляется газом от паровой фазы, а после прогрева при переходе на нагрузочные режимы – от жидкостной. На нагрузочных режимах газ из баллона 11 через расходный вентиль 12 поступает к магистральному вентилю 8, а от него по трубопроводу 7 высокого давления — в испаритель 23. Проходя по каналам испарителя СНГ переходит в парообразное состояние под действием тепла нагретой жидкости, поступающей по шлангу 20 из системы охлаждения двигателя, которая затем отводится в компрессор 21 по шлангу 22. Из испарителя газ поступает в магистральный фильтр 3, где очищается от механических примесей и смолистых веществ. Затем газ через дополнительный фильтр 4 поступает в первую ступень редуктора 2, где давление понижается до 0,20 МПа. Далее газ noступает во вторую ступень редуктора, где давление снижается до давления, близкого к атмосферному. Под действием разрежения во впускном газопроводе двигателя газ из второй ступени редуктора поступает в дозирующее экономайзерное устройство 1, встроенное в редуктор, а затем по трубопроводу 13 низкого давления в газовый смеситель 14, где смешивается с воздухом, образуя горючую смесь, которая поступает в цилиндры, обеспечивая работу двигателя.
Остановку двигателя на короткое время производят выключением зажигания, а при длительной остановке перекрывают также и магистральный вентиль 8.
Работу газовой установки контролируют с помощью манометра 5 и указателя 6 давления газа, расположенных в кабине водителя и соединенных соответственно с датчиком давления газов в первой ступени редуктора и датчиком уровня сжиженных газов в баллоне. В кабину также выведена рукоятка управления магистральным вентилем 8.
Резервная (бензиновая) система питания включает в себя бензиновый бак 9, бензопровод, фильтр-отстойник 16, бензиновый насос 17, карбюратор 18 с сетчатым пламегасителем. Однокамерный беспоплавковый карбюратор 18 горизонтального типа имеет проставку 15, которая является переходным узлом для присоединения карбюратора к выпускному трубопроводу двигателя. Принцип работы резервной системы питания аналогичен принципу работы классической карбюраторной системы питания бензинового двигателя. Для предотвращения одновременной работы автомобиля на двух видах топлива в систему топливоподачи устанавливают электромагнитный запорный клапан, а для прекращения подачи бензина в резервную систему питания бак 9 снабжают краном.
Одновременная работа на двух видах топлива приводит к нарушению состава горючей смеси, что сопровождается обратными вспышками и опасно в пожарном отношении.
Газобаллонные установки для работы на СНГ легковых автомобилей. По принципу действия и расположению аппаратуры газобаллонной установки сжиженного газа отечественные легковые автомобили не имеют существенных различий. В газовой установке, смонтированной на автомобиле ГАЗ-3102 «Волга», баллон 5 (рис. 37) размещается в багажнике автомобиля. На нем монтируется датчик 6 указателя уровня сжиженного газа и объединенные в один узел расходный вентиль 7 жидкостной фазы, расходный вентиль 9 паровой фазы, а также наполнительное устройство 8 с вентилями, обратными и предохранительными клапанами. Конструктивно объединены также редуктор 1 с испарителем и газовый фильтр 12 с электромагнитным клапаном.
Рис. 37. Схема газобаллонной установки для работы на СНГ автомобиля ГАЗ-3102 «Волга»
Сжиженный газ под избыточным давлением из баллона 5 поступает через расходные вентили 7 или 9 по трубопроводу 11 в газовый фильтр 12. Из фильтра очищенный газ по трубопроводу 13 поступает в двухступенчатый редуктор 1, в испарителе которого происходит одновременное испарение СНГ и понижение его давления до 0,10 МПа. Для испарения газа используется нагретая жидкость системы охлаждения двигателя, которая поступает в испаритель из головки цилиндров через шланг 3 и сливается из него через шланг 14 в трубопровод отопителя кузова. Из редуктора 1 газ по шлангу через регулировочный винт 2 поступает в смесительное устройство 4 и через форсунки – в карбюратор-смеситель, где приготовляется горючая смесь, необходимая для данного режима работы двигателя.
Газобаллонная установка позволяет полноценно работать автомобилю ГАЗ-3102 «Волга» как на СНГ, так и на бензине, который поступает к двигателю по трубопроводу 10 из топливного бака. В кабине водителя под панелью приборов установлены: переключатель вида топлива (СНГ — бензин), выключатель электромагнитного клапана газового фильтра и кнопочный выключатель пускового клапана. Пусковой электромагнитный клапан срабаты-
вает после включения системы зажигания.
Газобаллонные установки для работы на СПГ.
Основные конструктивные параметры установок СПГ грузовых автомобилей ЗИЛ и ГАЗ практически полностью унифицированы, а их конструктивные схемы имеют в основном различие по количеству баллонов. Так, на автомобиле ЗИЛ-431710 установлено 10 баллонов, на автомобиле ЗИЛ-431610 – 8, на автомобиле ГАЗ-53-27– 7.
Полезная вместимость каждого баллона составляет 5О л., а тепловая энергия газа, содержащегося в одном баллоне, эквивалентна примерно 11,5 л. бензина. Запас хода автомобиля при работе на СПГ составляет 230…270км.
Газобаллонная установка автомобиля ЗИЛ-431610 (рис. 38) включает в себя редукторы 5 и 3 соответственно высокого и низкого давления, электромагнитный клапан 6 с газовым фильтром, пусковой клапан 4, газовый смеситель-переходник 2, карбюратор-смеситель 18, трубопроводы высокого и низкого давления, восемь баллонов 16 с арматурой (вентили, манометры и т.д.). Баллоны закреплены на продольных брусьях под грузовой платформой автомобиля. Они последовательно соединены между собой трубопроводами 10 и разделены на две группы (по четыре баллона в каждой). Трубопроводы снабжены компенсаторами в виде спиральных витков, которые предохраняют их от поломок при деформациях и перекосах рамы. Каждая группа баллонов имеет запорные вентили 8 и 11, соединенные трубопроводами с распределительной крестовиной 12, на которой размещены наполнительный 9 и расходный 13 вентили. Наполнительный вентиль служит для заполнения всех баллонов сжатым газом, а расходный обеспечивает поступление (отбор) или прекращение подачи газа от баллонов к аппаратам системы питания.
Рис. 38. Схема газобаллонной установки для работы на СПГ автомобилей семейства ЗИЛ
При работе газобаллонной установки газ из баллонов 16 поступает к крестовине 12 и, пройдя через расходный вентиль 13, направляется к одноступенчатому редуктору высокого давления 5, на входе которого установлен съемный газовый фильтр (такой же второй фильтр расположен внутри редуктора). Во избежание переохлаждения газа в редукторе последний расположен в подкапотном пространстве автомобиля. В зимнее время он дополнительно обогревается горячей жидкостью, поступающей в кронштейн редуктора из системы охлаждения двигателя.
В магистрали редуктора высокого давления происходит частичная очистка газа от механических примесей и снижение его давления до 0,9 МПа. Затем газ поступает к электромагнитному клапану 6 с вмонтированным в него газовым фильтром. Электромагнитный клапан обеспечивает автоматическое перекрытие газовой магистрали в аварийной ситуации. Газ, проходя через фильтр, установленный в этом клапане, очищается от смолистых веществ, ржавчины и пыли, поступает в первую ступень двухступенчатого редуктора 3 низкого давления, который по принципу работы и устройству аналогичен редуктору, применяемому на установках СНГ.
Из первой ступени редуктора низкого давления газ поступает во вторую его ступень, где давление понижается до значения, близкого к атмосферному. Далее газ из второй ступени редуктора низкого давления поступает в дозирующее экономайзерное устройство, обеспечивающее подачу необходимого количества газа в газовый смеситель-переходник 2, где газ смешивается с очищенным воздухом, поступающим из воздушного фильтра. Смешанный с воздухом газ под действием разрежения, создаваемого в работы на газе и на бензине.
При работе двигателя на газе необходимый состав горючей смеси в режиме холостого хода образуется в специальной приставке карбюратора-смесителя, куда газ поступает по шлангу 21 из патрубка газового смесителя-переходника 2.
Для повышения стабильности работы двигателя при переходе с режима холостого хода на нагрузочные режимы на входе в карбюратор-смеситель 18 установлен тарельчатый обратный клапан, который при частоте вращения коленчатого вала свыше 1000 об/мин открывается, тем самым, обогащая горючую смесь на переходных режимах. Пуск холодного двигателя при низких температурах воздуха обеспечивается пусковым устройством, состоящим из пускового электромагнитного клапана 4 с дозирующим жиклером, шланга 17, воздушной заслонки карбюратора-смесителя 18 и кнопочного переключателя, расположенного в кабине водителя, В отличие от газобаллонных установок СПГ автомобилей ЗИЛ газобаллонные установки автомобилей ГАЗ не имеют устройства для облегчения пуска двигателей при низких температурах.
Работу газобаллонной установки СПГ контролируют по показаниям манометров высокого и низкого давления. Манометр 7 высокого давления (со шкалой с пределом измерений до 25 МПа) показывает давление газа в баллонах 16 и одновременно с этим является указателем запаса сжатого газа на автомобиле. Дополнительно к этому в редуктор высокого давления ввернут датчик контрольной лампы, установленной на панели приборов в кабине. Лампа загорается при снижении давления газа в редукторе ниже 0,45 МПа, сигнализируя о том, что газа в баллонах осталось на 10… 12 км пробега.
Манометр низкого давления (со шкалой с пределом измерений до 0,6 МПа) также установлен в кабине водителя и предназначен для контроля за работой и правильностью регулировки двухступенчатого редуктора низкого давления.
Бензиновая система питания автомобилей, работающих на СПГ, по принципу действия аналогична системам питания базовых моделей автомобилей и обеспечивает запас хода 450…525 км. Она включает в себя топливный бак 14
(рис. 39), фильтр грубой очистки бензина 15, топливопроводы, бензиновый насос 20, карбюратор-смеситель 18. Особенностью бензиновой системы питания является наличие электромагнитного клапана для отключения подачи бензина при работе на СПГ. На газобаллонных автомобилях ЗИЛ он устанавливается на фильтре 19 тонкой очистки бензина, а на автомобилях ГАЗ – на каркасе радиатора. Управление клапаном производится из кабины водителя.
Газодизельные установки для работы на сжатых газах.
Газоподающая аппаратура СПГ и приборы подачи воздуха и жидкого топлива в дизелях составляют газодизельную систему питания, которая обеспечивает возможность работы дизеля как на смеси природного газа и небольшой дозы дизельного топлива, так и на чистом дизельном топливе.
Воспламенение одной только газовоздушной смеси от сжатия в дизелях практически невозможно из-за высокой температуры самовоспламенения газа (700… 750 °С), значительно превышающей температуру самовоспламенения дизельного топлива (320… 370 °С). Поэтому в цилиндры дизеля подают небольшую массовую дозу (12… 17%) запального дизельного топлива, очаги самовоспламенения которого в цилиндрах обеспечивают надежное сгорание даже сильно обедненного заряда газовоздушной горючей смеси. При увеличение дозы запального топлива повышается устойчивость процесса сгорания вследствие образования большого количества очагов самовоспла-менения.
Газодизельные установки для работы на СПГ применяются на автомобилях КамАЗ следующих моделей: –53208 (бортовой), –53219 (шасси), –54118 (седельный тягач), –55118 (самосвал). На этих автомобилях устанавливается дизель К-7409 с трехрежимным регулятором частоты вращения коленчатого вала, газоподающей аппаратурой и устройством для подачи запального дизельного топлива.
В газодизельных установках сжатый газ содержится в зависимости от модели автомобилей в восьми или десяти баллонах, размещенных поперек рамы автомобиля. На бортовых автомобилях баллоны 15 (рис. 39) размещают на продольных брусьях платформы; на седельных тягачах и автомобилях-самосвалах — за кабиной, в специальных держателях, закрепленных на раме; на автомобилях-шасси — на деревянных брусьях, установленных на лонжеронах рамы. Горловины всех баллонов направлены в одну сторону. Сами баллоны последовательно соединены трубопроводами и разделены на две
Рис. 39. Схема газодизельной установки для работы на СПГ автомобилей КамАЗ:
Подача воздуха: А – из воздушного фильтра; Б – к индикатору засоренности; Поступление жидкости:
В – в систему охлаждения; Г – из системы охлаждения.
Сами баллоны последовательно соединены трубопроводами и разделены на две группы, каждая из которых имеет вентиль 10 и связана трубопроводом с крестовиной, имеющий наполнительный 9 и расходный 8 вентили.
С помощью наполнительного вентиля 9 производится заправка сжатым газом всех баллонов газодизельной установки. При открытии расходного вентиля 8 газ по трубопроводу направляется в подогреватель 7, а из него – в редуктор высокого давления 6, где происходит понижение давления до 0,95 МПа. Колебания рабочего давления газа поддерживаются автоматически в пределах 0,15 МПа. Если давление на выходе становится ниже допустимого, редуктор остается постоянно открытым, а при давлении большем 1,5 МПа срабатывает предохранительный клапан 11. Из редуктора высокого давления газ по гибкому шлангу подается к электромагнитному клапану 4, на входе в который встроен войлочный газовый фильтр. В режиме работы дизеля на жидком топливе электромагнитный клапан под действием пружины находится в закрытом положении и не пропускает газ в редуктор низкого давления. При переходе дизеля на работу в газодизельном режиме электромагнитный клапан 4 открывается и отфильтрованный от механических примесей газ поступает в двухступенчатый редуктор низкого давления 13. В первой ступени этого редуктора давление газа снижается до 0,20 МПа, а на выходе из второй ступени – до атмосферного.
Из двухступенчатого редуктора газ поступает в дозатор газа 17 со встроенным в него мембранным механизмом, обеспечивающим подачу необходимого количества газа в смеситель 18, размещенный на впускном коллекторе после воздушного фильтра дизеля.
При такте впуска образовавшаяся в смесителе газовоздушная смесь поступает по впускному газопроводу в цилиндры дизеля 1, затем в конце такта сжатия в них через штатные форсунки впрыскивается небольшое количество дизельного топлива.
Дозу запального жидкого топлива подают в цилиндры с необходимым опережением, обеспечивающим сгорание основной массы газовоздушной смеси при переходе поршня через ВМТ. Механизм 3 ограничителя дозы запального топлива, установленный на топливном насосе высокого давления 2, состоит из электромагнитного привода и передвижного упора 20 регулятора частоты вращения коленчатого вала. При переводе дизеля на газовое топливо ограничитель 3 переключает насос высокого давления на режим подачи только дозы дизельного топлива для воспламенения газовоздушной смеси.
Для ограничения подачи газа при максимальной частоте вращения коленчатого вала предусмотрено устройство, состоящее из зубчатого венца 21, датчика 22 частоты вращения и связанного с ним посредством реле электромагнитного клапана 16, который соединяет полость диффузора смесителя с мембранным узлом, ограничивающим подачу газа и взаимодействующим с заслонкой дозатора газа 17, обеспечивая ее частичное прикрытие при частоте вращения коленчатого вала около 2 600 об/мин.
В газодизельной системе питания имеется также блокировка, исключающая поступление в цилиндр дизеля одновременно газа и полной (цикловой) подачи топлива. Блокировка включает в себя подвижной упор 20, датчик 19 блокировки и ограничитель 3 дозы запального топлива. Блокировка происходит следующим образом.
При установке переключателя в положение, соответствующее работе дизеля в газодизельном режиме, подвижной упор 20 перемещается ограничителем 3 в положение, при котором подача запальной дозы жидкого топлива ограничивается. При этом подвижной упор 20, воздействуя на датчик блокировки, замыкает цепь питания реле, управляющего включением электромагнитного клапана подачи газа. О переходе на газодизельный режим работы сигнализирует контрольная лампа с зеленым светофильтром, установленная в кабине.
При нахождении подвижного упора 20 в положении, соответствующем работе дизеля на режиме жидкого топлива, он максимально отдален от ограничителя 3 и не воздействует на датчик 19 блокировки устройства, разъединяя посредством реле цепь питания электромагнитного клапана 4 подачи газа. Следовательно, если топливный насос высокого давления работает на полную цикловую подачу дизельного топлива, газовый электромагнитный клапан закрывается, и подача газа автоматически прекращается. Это необходимо для предотвращения разрушения деталей механизмов дизеля из-за передозировки – одновременной подачи газа и дизельного топлива.
Для предотвращения аварийных ситуаций при работе газодизельных установок предусматривается автоматический переход с газодизельного режима на дизельный в случае внезапного прекращения подачи газа (при полном расходе газа, повреждениях гибких шлангов, трубопроводов и т.д.). С этой целью в магистра ли подвода газа установлен датчик 12 давления газа. При падении давления ниже 0,45 МПа с помощью датчика отключается ограничитель 3 дозы запального топлива, а электромагнитный клапан 4 перекрывает подачу газа, обеспечивая тем самым переход газодизельной установки в режим работы только на дизельном топливе. Работу газодизельной установки контролируют с помощью манометра низкого давления (до 0,6 МПа), размещенного в кабине водителя, и манометра 14 высокого давления (до 25 МПа), установленного на первом баллоне. При снижении давления газа в баллонах ниже 1,05 МПа срабатывает установленный в газовой магистрали датчик 5, подавая сигнал водителю об аварийной выработке газа.
Список литературы:
1. Тур Е.Я., Серебряков К.Б., Жолобов А.А., «Устройство автомобиля», М., Машиностроение, 1991 г.
2. Пузанков А.Г., «Автомобили. Устройство и техническое обслуживание», М., Академия, 2007 г.
3. Тихомиров А.И., «Карбюраторы К-126, К- 135. Устройство, регулировка, ремонт», М., Колесо, 2004 г.
4. Пехальский А.П., Пехальский И.А., «Устройство автомобилей», М., Академия, 2005 г.
5. Ерохов В.И., «Система впрыска топлива легковых автомобилей», М., Транспорт, 2002 г.
kursak.net
Система питания газовым топливом — e-fee.ru
Система питания газовым топливомСовременный автомобиль может работать на бензине и сжиженном газе
Двигатели газобаллонных автомобилей могут работать на различных природных и промышленных газах, которые могут находиться как в сжатом, так и в сжиженном виде в специальных баллонах.
В основном в качестве такого газа используется метан. В баллонах сжатый газ находится под давлением порядка 20 МПа.
Сжиженный газ - это, как правило, смесь пропана и бутана, находится в жидком состоянии в баллоне при более низком давлении порядка 1,6 – 2 МПа. Сжиженный газ в баллоне не должен занимать весь объем, часть газа должна находиться в газообразном состоянии, чтобы не произошло разрушения баллона при увеличении объема жидкости вследствие нагрева.
Антидетонационная стойкость газа выше, чем бензина. В то же время смесь газа с воздухом имеет меньшую теплоту сгорания и стандартный двигатель при работе на газе будет иметь меньшую мощность, чем тот же двигатель при работе на жидком топливе. Несмотря на некоторые недостатки, газобаллонные автомобили получают все большее распространение в мире.
Перед тем, как подать газ в камеру сгорания, нужно снизить его давление, для чего используют специальные редукторы. Сжиженный газ предварительно переводится в газообразное состояние с помощью испарителя – специального теплообменника, подключенного к системе охлаждения двигателя.
Емкость для газа специальной формы
Все больше известных производителей автомобилей серийно выпускают модели, предназначенные для эксплуатации на двух видах топлива — жидком и газообразном. На этих автомобилях параллельно устанавливаются две системы питания — для жидкого топлива и для газа. Водитель может с помощью контрольного устройства переключать работу двигателя на тот или другой вид топлива и определять остаток любого топлива с помощью контрольных приборов.
Необходимо размещать газовые баллоны в безопасном месте, чтобы они не были повреждены в случае аварии. Иногда баллоны устанавливают в багажном отделении легковых автомобилей, но располагают их при этом как можно дальше от задней части автомобиля, которая может подвергнуться удару при аварии. На грузовых автомобилях баллоны для сжатого газа обычно размещают между рамой и грузовой платформой. У автобусов баллоны могут располагаться на крыше. Некоторые производители изготавливают емкости для газового топлива из композитных материалов специальной формы для лучшего использования объема багажника.
e-fee.ru
Система питания двигателя с газораспределительной установкой
В двигателях с газобаллонными установками в качестве топлива применяются горючие газы:
1) сжатые (природные) газы — чаще всего это метан, хранящийся под давлением до 20 МПа;
2) сжиженные (нефтяные) газы — чаще всего бутано-пропановые смеси;
3) сжижающиеся газы при давлении 1,6 МПа.
Газораспределительные смеси имеют более высокие антидетонационные свойства и незначительную токсичность отработанных газов, чем бензиновоздушные двигатели. Кроме того, из-за отсутствия конденсации паров полностью исключается смывание пленки моторного масла со стенок гильз и поршней двигателя, а также уменьшается степень нагарообразования на стенках камер сгорания цилиндров. В результате этого срок эксплуатации автомобильного двигателя возрастет в 1,5-2 раза.
Одновременно с достоинствами газобаллонные установки имеют ряд недостатков:
1) повышение пожаро и взрывоопасности;
2) уменьшение мощности двигателя из-за более низкой скорости сгорания газовоздушной смеси, по сравнению с бензиновыми двигателями;
3) уменьшение грузоподъемности автомобиля, так как газобаллонные установки имеют большой вес.
Системы питания, работающие на газобаллонных установках, конструируются на базе карбюраторных систем. Карбюраторные двигатели, оборудованные специальной газораспределительной установкой, могут работать как на газе, так и на бензине.
Газобаллонная установка на сжатом газе состоит из:
1) баллонов для хранения газа:
2) расходных вентилей;
3) наполнительных вентилей;
4) подогревателя;
5) редуктора высокого давления;
6) электромагнитного клапана с фильтром;
7) редуктора низкого давления;
8) карбюратора-смесителя.
В газобаллонных установках, работающих на сжатом газе, баллоны для хранения сжатого воздуха могут быть объединены в две группы. Газ через расходные вентили может поступать в систему питания как от одной отдельной группы баллонов, так и от обеих групп сразу. Зарядка баллонов газом осуществляется через наполнительный вентиль. Через расходные вентили газ поступает в подогреватель. Подогреватель предохраняет систему от замерзания, возможного вследствие расширения газов в редукторе. Для подогрева используется тепло отработанных газов. Из редуктора высокого давления газ поступает в электромагнитный клапан. Электромагнитный клапан открывается при пуске двигателя, он пропускает газ в редуктор низкого давления.
В редукторе низкого давления понижается давление газа, оно становится немного ниже атмосферного. После этого газ поступает в карбюратор-смеситель, а при режиме холостого хода газ поступает непосредственно в дроссельное пространство. Редуктор низкого давления также дозирует газ для приготовления газовоздушной смеси оптимального состава и отключает газовую магистраль при остановке двигателя.
В двигателях, оснащенных газораспределительной установкой, работа на бензине осуществляется по стандартной схеме питания бензином, которая подключена автономно к карбюратору-смесителю.
Газобаллонная установка, работающая на сжиженном газе, состоит из:
1) баллонов с газовой арматурой;
2) наполнительного, магистрального и расходных вентилей;
3) испарителя;
4) редуктора;
5) смесителя.
Сжиженный газ находится в жидком и парообразном состоянии в баллоне из листовой стали. На баллоне находятся расходные вентили паровой и жидкостной фаз газа. При пуске и прогреве двигателя используется газ от паровой фазы топлива, а после прогрева используется жидкостная фаза. От расходных вентилей, газ поступает к магистральному вентилю. Через магистральный вентиль и штанги высокого давления газ попадает в испаритель. В испарителе происходит испарение сжиженного газа под воздействием тепла охлаждающей жидкости. Далее сжиженный газ в парообразном состоянии поступает через фильтры в газовый редуктор. В редукторе происходит снижение давления газа до уровня в два раз меньше атмосферного. После этого газ через дозирующее устройство по газопроводу поступает к обратному клапану входного патрубка смесителя. Далее газ попадает через форсунки к дроссельным заслонкам газового смесителя. Из смесителя газовоздушная смесь поступает в камеры сгорания цилиндров двигателя и там сгорает.
Двигатели, оснащенные газораспределительной установкой, работающей на сжиженном газе, также могут работать и на бензине. Для этого вместе с газовым смесителем устанавливается карбюратор с сетчатыми пламегасителями. Во время работы двигателя запрещено переходить с одного вида топлива на другой, так как это приводит к повреждению диафрагмы газового редуктора.
avtokriminalist.ru
Система питания газовым топливом — Энциклопедия журнала "За рулем"
Современный автомобиль может работать на бензине и сжиженном газе
Двигатели газобаллонных автомобилей могут работать на различных природных и промышленных газах, которые могут находиться как в сжатом, так и в сжиженном виде в специальных баллонах.
В основном в качестве такого газа используется метан. В баллонах сжатый газ находится под давлением порядка 20 МПа.
Сжиженный газ - это, как правило, смесь пропана и бутана, находится в жидком состоянии в баллоне при более низком давлении порядка 1,6 – 2 МПа. Сжиженный газ в баллоне не должен занимать весь объем, часть газа должна находиться в газообразном состоянии, чтобы не произошло разрушения баллона при увеличении объема жидкости вследствие нагрева.
По сравнению с жидким нефтяным топливом газ обладает некоторыми преимуществами при использовании его в качестве топлива для ДВС. Во-первых, газ дешевле жидкого топлива. Во-вторых, он лучше смешивается с воздухом, образуя однородную горючую смесь, и обеспечивает более полное сгорание, поэтому в отработавших газах газобаллонных автомобилей содержится меньше вредных веществ. Кроме того, газ в отличие от бензина не разжижает моторное масло, а это гарантирует уменьшение износа деталей двигателя. Антидетонационная стойкость газа выше, чем бензина. В то же время смесь газа с воздухом имеет меньшую теплоту сгорания и стандартный двигатель при работе на газе будет иметь меньшую мощность, чем тот же двигатель при работе на жидком топливе. Несмотря на некоторые недостатки, газобаллонные автомобили получают все большее распространение в мире.
Перед тем, как подать газ в камеру сгорания, нужно снизить его давление, для чего используют специальные редукторы. Сжиженный газ предварительно переводится в газообразное состояние с помощью испарителя – специального теплообменника, подключенного к системе охлаждения двигателя.
Емкость для газа специальной формы
Все больше известных производителей автомобилей серийно выпускают модели, предназначенные для эксплуатации на двух видах топлива — жидком и газообразном. На этих автомобилях параллельно устанавливаются две системы питания — для жидкого топлива и для газа. Водитель может с помощью контрольного устройства переключать работу двигателя на тот или другой вид топлива и определять остаток любого топлива с помощью контрольных приборов.
Необходимо размещать газовые баллоны в безопасном месте, чтобы они не были повреждены в случае аварии. Иногда баллоны устанавливают в багажном отделении легковых автомобилей, но располагают их при этом как можно дальше от задней части автомобиля, которая может подвергнуться удару при аварии. На грузовых автомобилях баллоны для сжатого газа обычно размещают между рамой и грузовой платформой. У автобусов баллоны могут располагаться на крыше. Некоторые производители изготавливают емкости для газового топлива из композитных материалов специальной формы для лучшего использования объема багажника.
wiki.zr.ru
Особенности конструкции и работы системы питания двигателей на сжатом , сжиженном природном газе
Газовыми называются двигатели, работающие на газообразном топливе – сжатых и сжиженных газах. Особенностью таких двигателей является их способность работать также и на жидких топливах, например, бензине.Система питания газовых двигателей имеет специальное газовое оборудование. Предусмотрена также дополнительная резервная система, обеспечивающая при необходимости работу двигателя на бензине. По сравнению с бензиновыми двигателями газовые модели обычно более экономичны, менее токсичны, работают без детонации в цилиндрах, имеют меньший износ деталей ЦПГ, КШМ и др., срок их службы больше в 1,5–2 раза.Однакополная мощность при =const и прочих одинаковых условиях, снижается на 10–20 %, т.к. теплотворность горючей смеси снижается на 10–20 %. Система питания газовым топливом более пожароопасна, для ее технического обслуживания требуется специальное оборудование.Применяются две разновидности газовых топлив.Сжатые газы – газы, которые при обычной температуре окружающего воздуха и высоком давлении (до 20 МПа) сохраняют газообразное состояние. В качестве топлива для газовых двигателей обычно используется природный газ на основе метана.Сжиженные газы – газы, которые переходят из газообразного состояния в жидкое при нормальной температуре воздуха и относительно небольшом давлении (до 1,6 МПа). Это преимущественно нефтяные газы.Для газовых двигателей используются сжиженные газы следующих марок: СПБТЗ – смесь пропана и бутана техническая зимняя; СПБТЛ – смесь пропана и бутана техническая летняя; БТ – бутан технический.Газообразное топливо менее токсично, имеет более высокое октановое число (около 100 и более единиц), дает меньшее нагарообразование в цилиндрах и не разжижает масло в картере двигателя.В систему питания двигателя, работающего на сжатом газе (рис. 9), входят баллоны 1 для сжатого газа, наполнительный 5, расходный 6 и магистральный 18 вентили, подогреватель 17 газа, манометры высокого 8 и низкого 9 давления, редуктор 11 с фильтром 10 и дозирующим устройством 12, газопроводы высокого 3 и низкого 13 давления, карбюратор-смеситель 14 и трубка 19, соединяющая разгрузочное устройство с впускным трубопроводом двигателя.Газодизельные установки для работы на сжатых газах. Газоподающая аппаратура СПГ и приборы подачи воздуха и жидкого топлива в дизелях составляют газодизельную систему питания, которая обеспечивает возможность работы дизеля как на смеси природного газа и небольшой дозы дизельного топлива, так и на чистом дизельном топливе. Воспламенение одной только газовоздушной смеси от сжатия в дизелях практически невозможно из-за высокой температуры самовоспламенения газа (700… 750 °С), значительно превышающей температуру самовоспламенения дизельного топлива (320… 370 °С). Поэтому в цилиндры дизеля подают небольшую массовую дозу (12… 17%) запального дизельного топлива, очаги самовоспламенения которого в цилиндрах обеспечивают надежное сгорание даже сильно обедненного заряда газовоздушной горючей смеси. При увеличение дозы запального топлива повышается устойчивость процесса сгорания вследствие образования большого количества очагов самовоспла-менения. Газодизельные установки для работы на СПГ применяются на автомобилях КамАЗ следующих моделей: –53208 (бортовой), –53219 (шасси), –54118 (седельный тягач), –55118 (самосвал). На этих автомобилях устанавливается дизель К-7409 с трехрежимным регулятором частоты вращения коленчатого вала, газоподающей аппаратурой и устройством для подачи запального дизельного топлива. В газодизельных установках сжатый газ содержится в зависимости от модели автомобилей в восьми или десяти баллонах, размещенных поперек рамы автомобиля. На бортовых автомобилях баллоны 15 (рис. 39) размещают на продольных брусьях платформы; на седельных тягачах и автомобилях-самосвалах — за кабиной, в специальных держателях, закрепленных на раме; на автомобилях-шасси — на деревянных брусьях, установленных на лонжеронах рамы. Горловины всех баллонов направлены в одну сторону. Сами баллоны последовательно соединены трубопроводами и разделены на две Рис. 39. Схема газодизельной установки для работы на СПГ автомобилей КамАЗ: Подача воздуха: А – из воздушного фильтра; Б – к индикатору засоренности; Поступление жидкости: В – в систему охлаждения; Г – из системы охлаждения.
cyberpedia.su
Система питания газовых двигателей
В газовых двигателях в качестве топлива используются газы природного или промышленного происхождения. Природные (сжимаемые) добываются из скважин из недр земли или вместе с добычей нефти. К промышленным (сжижаемым) газам относятся газы, получаемые на предприятиях нефтеперерабатывающей промышленности. К ним относятся этан, пропан, бутан и др. Наибольшее распространение в газовых двигателях получило применение сжиженного бутана.
В систему газового оборудования автомобиля, работающего на сжиженном газе, входят баллоны, соединенные трубками, вентили, газовый редуктор, фильтр газового редуктора, электромагнитный клапан пусковой системы, газовый смеситель.
Сжиженный нефтяной газ содержится в баллоне 9 (рис. 3.9), размещенном под платформой автомобиля. В передней стенке баллона ввернуты расходные вентили, через которые газ, проходя скоростной клапан, поступает к тройнику. От тройника газ по шлангу подается к электромагнитному клапану 7, имеющему фильтр со сменным элементом и закрытому алюминиевым колпаком.
Рис. 3.9. Система газового оборудования автомобиля, работающего на
Сжиженном газе:
1 — газовый редуктор; 2 — электромагнитный клапан пусковой системы; 3 — Фильтр газового редуктора; 4 — Трубопровод от клапана пусковой системы к смесителю; 5 — испаритель; 6 — шланг высокого давления от электромагнитного клапана к испарителю; 7 — электромагнитный клапан; 8 И 12 — Трубопроводы; 9 — Баллон сжиженного газа; 10 — Крестовина; /1 — скоростной клапан; 13 — Смеситель; 14 — Трубопровод от редуктора к системе холостого хода смесителя; 15 — Впускной трубопровод; 16 — газовый смеситель; 17 — Трубопровод от испарителя к газовому редуктору; 18 — Трубопровод от редуктора к смесителю; 19 — шланг от редуктора к впускному трубопроводу; 20 — Трубопровод от газового редуктора к электромагнитному клапану пусковой системы
При включении зажигания и выключателя электромагнитного клапана газ направляется по шлангу высокого давления в испаритель 5, установленный на впускном трубопроводе двигателя. Из испарителя газ поступает в двухступенчатый редуктор 7, где его давление снижается. На входе в редуктор встроен газовый фильтр 3 Со сменным фильтрующим элементом, откуда газ попадает в первую ступень, где редуцируется, а затем подается во вторую ступень. Из полости второй ступени редуктора газ поступает в дози-рующе-экономайзерное устройство, которое подает необходимое количество газа в смеситель 13.
Пусковая система включает в себя электромагнитный пусковой клапан с дозирующим жиклером, трубопроводы, выключатель клапана. При пуске холодного двигателя после включения пускового клапана газ из первой ступени редуктора под давлением поступает в смеситель. Работа топливной системы контролируется манометром, установленным в кабине. Давление в первой ступени редуктора должно быть в пределах 0,16...0,18 МПа.
Газовый баллон. Баллон предназначен для хранения газа в жидком состоянии и рассчитан на рабочее давление 1,6 МПа. На заводе-изготовителе баллон подвергают соответствующим испытаниям и делают отметки о них в бирке баллона. Комплект арматуры баллона состоит из наполнительного вентиля, двух расходных вентилей, контрольного вентиля максимального наполнения баллона, предохранительного клапана, датчика указателя уровня сжиженного газа и сливной пробки.
Наполнительный вентиль. Этот вентиль предназначен для заправки баллона газом. В корпус вентиля ввернуто седло, к которому постоянно прижимается клапан с уплотнителем. Заправочное отверстие в корпусе закрывается пробкой. Обратный клапан предотвращает выход газа из баллона в случае отсоединения заправочного шланга.
Расходный вентиль. Вентиль предназначен для отбора газа из баллона. Из верхнего вентиля газ поступает в систему в газообразном состоянии, а из нижнего — в сжиженном. При вращении маховика вентиля по часовой стрелке клапан перекрывает отверстие в седле корпуса вентиля.
Скоростной клапан. В случае аварийного разрыва трубопроводов необходимо ограничить выход газа, что повышает пожарную безопасность автомобиля. Для этого предназначен скоростной клапан. После открытия расходных вентилей плунжер под давлением газа в баллоне перемещается и закрывает отверстие для прохода газа в корпусе клапана. В систему питания газ поступает только через отверстие в плунжере, которое имеет диаметр 0,13...0,19 мм. После выравнивания давления, что происходит через 2...3 мин, плунжер перемещается под действием пружины и открывает отверстие в корпусе клапана. Газ начинает поступать в систему питания в необходимом количестве. В случае разрыва трубопроводов системы питания клапан под действием давления в баллоне закрывается, и газ выходит в атмосферу только через небольшое отверстие в плунжере, что позволяет принять необходимые противопожарные меры.
Контрольный вентиль. Предназначен для определения момента максимального наполнения баллона. Перед заправкой баллона на штуцер контрольного вентиля следует навернуть наконечник шланга со смотровым устройством. Другой конец шланга отводится в специальную емкость, имеющуюся на газонаполнительной станции. В процессе наполнения баллона контрольный вентиль открывается, и через смотровое устройство определяется момент заполнения сжиженным газом.
Предохранительный клапан. Клапан предназначен для предохранения баллона от высокого давления и отрегулирован на начало открытия при давлении 1,68 МПа и полное открытие при давлении 1,8 МПа, при этом зазор между ним и седлом должен быть
Не менее 2,6 мм. Если давление превышает приведенные значения, клапан с уплотнителем отжимается от седла, преодолевая усилие пружины, и открывает отверстие для выхода газа из баллона.
Электромагнитный клапан. Для очистки газа, поступающего в редуктор, и отключения газовой магистрали при остановке двигателя предназначен электромагнитный клапан, состоящий из корпуса, электромагнита с клапаном, войлочного фильтрующего элемента, алюминиевого колпака, стяжного болта, подводящего и отводящего газ штуцеров. Уплотнение стыка между корпусом и колпаком фильтра осуществляется резиновым кольцом. Стык между колпаком фильтра и головкой стяжного болта уплотнен медной прокладкой.
При выключенном зажигании клапан под действием пружины закрыт и не пропускает газ в редуктор. При включении зажигания клапан открывается, и очищенный от механических примесей газ поступает в испаритель, редуктор и далее в смеситель.
Испаритель. Для преобразования газового топлива из жидкой фазы в газообразную служит испаритель. Испаритель разборной конструкции: его алюминиевый корпус состоит из двух частей. Через каналы в плоскости разъема проходит газ. Такая конструкция позволяет очищать газовые каналы от отложений.
Газовый редуктор. Для снижения давления газа до значения, близкого к атмосферному, используют газовый редуктор (рис. 3.10, А). Редуктор — двухступенчатый, мембранно-рычажного типа. Принципы действия первой и второй ступеней редуктора одинаковы. Каждая ступень имеет клапан, мембрану, рычаг, шарнирно связывающий клапан с мембраной, и пружину с регулировочной гайкой.
Редуктор имеет также дополнительные устройства мембранно-пружинного типа, которые обеспечивают автоматическое перекрытие поступления газа к смесителю при выключении двигателя и дозирование количества газа в соответствии с нагрузочным режимом работы двигателя.
При неработающем двигателе и закрытом расходном вентиле (при выработанном газе) давление в полости первой ступени равно атмосферному, и клапан 3 Первой ступени находится в открытом положении под действием усилия пружины 10. При открытом вентиле и включенном электромагнитном клапане газ поступает в полость первой ступени редуктора, пройдя предварительно через вентиль и электромагнитный клапан. Давление газа действует на мембрану 8, Которая, преодолевая усилие пружины 10, Прогибается и при достижении заданного давления через рычаг 12 Закрывает клапан 3.
Давление газа в полости регулируется изменением при помощи гайки 11 Усилия пружины 10, Действующей на мембрану 8, И
Устанавливается в пределах 0,16...0,18 МПа. Давление газа в первой ступени контролируется при помощи дистанционного электрического манометра, установленного в кабине, и датчика, размещенного на редукторе.
При неработающем двигателе клапан 16 Второй ступени находится в закрытом положении и плотно прижат к седлу пружиной 41 Разгрузочного устройства мембраны и пружиной 47 Мембраны, усилие от которых передается через шток 49 и Стержень 48, Рычаг 29 И толкатель 26.
При пуске двигателя под дроссельными заслонками газового смесителя создается вакуум, который по шлангам (через вакуумную полость экономайзера) передается в полость В разгрузочного устройства. Мембрана 38 ъ Результате возникновения вакуума прогибается и сжимает пружину 41 Разгрузочного устройства мембраны, тем самым разгружается клапан 16 Второй ступени. Усилие пружины 4 7 Становится недостаточным для удержания клапана 16 Второй ступени в закрытом положении, и он открывается под давлением газа в полости А первой ступени. Газ заполняет полость Б второй ступени, а затем через дозирующе-экономайзерное устройство (экономайзер) поступает в смеситель.
В режиме холостого хода расход газа незначителен, и в полости второй ступени создается избыточное давление 50...70 Па (5... 7 мм вод. ст.). По мере открытия дроссельных заслонок расход газа увеличивается, и на режимах, близких к режиму полной мощности, давление газа в полости снижается до вакуума 150...200 Па (15...20 мм вод. ст.), при этом мембрана 39Прогибается и через систему рычагов увеличивает открытие клапана 16 Второй ступени.
Одновременно возрастают степень открытия клапана 3 Первой ступени и расход газа через него. При большом открытии дроссельных заслонок вакуум в смесительной камере понижается, что приводит к уменьшению вакуума в вакуумной полости экономайзера, и пружина 19 Открывает клапан 23, Обеспечивая подачу в смеситель дополнительного количества газа через отверстие 25 Мощностного регулирования подачи газа.
Рассмотрим подробнее, как проходит газ из полости Б редуктора через дозирующе-экономайзерное устройство (рис. 3.10, Б) В смеситель. По мере открытия дроссельных заслонок газового смесителя растет вакуум над обратным клапаном смесителя, он открывается, и газ поступает в форсунки смесителя.
При работе двигателя с прикрытыми дроссельными заслонками газ из второй ступени редуктора проходит к газовому смесителю через отверстие 5<?дозирующе-экономайзерного устройства. При полном (или близком к нему) открытии дроссельных заслонок вакуум во впускном трубопроводе двигателя становится недостаточным для преодоления усилия пружины мембраны экономайзера, в результате чего мембрана перемещается и открывает кла-
Пан 23. Газ начинает поступать дополнительно через отверстие 57 экономайзера.
Увеличение общей подачи газа приводит к обогащению газовоздушной смеси и повышению мощности двигателя. В правильно отрегулированном редукторе давление газа в полости первой ступени должно быть 0,16...0,18 МПа, а в полости второй ступени должно создаваться избыточное давление, на 80... 100 Па
(8... 10 мм вод. ст.) больше атмосферного, ход стержня ОдолЖен быть не менее 7 мм.
Газовый смеситель. Приготовление газовоздушной смеси для питания двигателя происходит в газовом смесителе. Газовый смеситель — двухкамерный вертикальный, с падающим потоком топливной смеси, с параллельным открытием дроссельных заслонок и двумя горизонтальными форсунками, расположенными в узких сечениях съемных диффузоров. Как правило, газовый смеситель изготовляется на базе стандартных карбюраторов с изменением конструкции для установки газовой форсунки и присоединения газовой трубки к системе холостого хода.
Дозирование газа для главной системы осуществляется дозиру-юще-экономайзерным устройством, расположенным в газовом редукторе. Питание газом системы холостого хода комбинированное: непосредственно из газового редуктора по трубопроводу 15 (см. рис. 3.9) и из трубопровода 16 Основной подачи газа. Смеситель снабжен исполнительным мембранным механизмом пневмо-центробежного ограничителя максимальной частоты вращения коленчатого вала двигателя.
Рис. 3.10. Газовый редуктор:
А — Устройство газового редуктора; Б — Схема работы экономайзера редуктора; 1 — седло клапана первой ступени; 2 — Уплотнитель клапана; 3 И 4 — Соответственно клапан и крышка первой ступени; 5 — Направляющая клапана; б, 9 И 31 — Контргайки; 7 — регулировочный винт клапана; 8 — Мембрана первой ступени; 10 — Пружина мембраны первой ступени; /1 — регулировочная гайка; 12 — Рычаг первой ступени; 13 И 32 — Оси рычагов; 14 — Седло клапана второй ступени; 15 — Уплотнительный клапан; 16 — Клапан второй ступени; 17 — Корпус дозирующе-экономайзерного устройства; 18 — Крышка корпуса; 19 — Пружина экономайзера; 20 — Мембрана экономайзера; 21 — Винт крепления крышки; 22 — Пружина клапана экономайзера; 23 — Клапан экономайзера; 24 И 58 — Дозирующие отверстия экономичного регулирования подачи газа; 25 И 57 — дозирующие отверстия мощностного регулирования подачи газа; 26 — Толкатель клапана; 27 — Пластина с дозирующими отверстиями; 28 — Прокладки пластины; 29— Рычаг второй ступени; 30— Регулировочный винт клапана; 33 — Крышка с патрубком системы холостого хода; 34 — Винт крепления крышки; 35 — Корпус редуктора; 36 — крышка разгрузочного устройства; 37 — Крышка редуктора; 38 — Мембрана разгрузочного устройства; 39 — Мембрана второй ступени; 40 — Усилительный диск мембраны; 41 — Пружина разгрузочного устройства мембраны; 42 — Регулировочный ниппель; 43 — Контргайка ниппеля; 44 — Стопорный винт; 45 — Штифт упорной шайбы; 46 — Колпачковая крышка ниппеля; 47 — Пружина мембраны второй ступени; 48 — Стержень; 49 — Шток мембраны; 50 — Упор мембраны; 51 — Болт крепления крышки редуктора; 52 — Прокладки; 53 — Корпус газового фильтра; 54 — Фильтрующий элемент; 55 — Патрубок для соединения вакуумной полости экономайзера с впускным трубопроводом двигателя; 56 — Патрубок для передачи вакуума в вакуумную полость разгрузочного устройства; 59 — Патрубок для подвода газа в смеситель; А — полость первой ступени; Б — полость второй ступени; В — полость разгрузочного устройства; Г — полость атмосферного давления; — направление движения газа
Крышка каналов системы холостого хода вместе с прокладкой установлена на корпусе газового смесителя и закреплена четырьмя винтами. В ней размещены винты регулирования состава газовой смеси и отверстие для присоединения вакуум-корректора.
my-miks.ru
Электронные системы питания двигателя, работающего на природном газе
Система питания двигателя, работающего на сжатом природном газе состоит из следующих основных составляющих:
- контур высокого давления (заправочный штуцер, трубопроводы, баллоны)
- область перехода от контура высокого давления к стороне низкого давления (редуктор давления газа с клапаном высокого давления для работы на газе и датчиком давления газа)
- контур низкого давления (гибкий шланг, газовая распределительная магистраль, датчик газовой распределительной магистрали, форсунка)
Рис. Система впрыска сжатого природного газа:
1 – газовый баллон 1 с запорным и обратным клапаном; 2 – газовый баллон 2 с запорным клапаном; 3 – газовый баллон 3 с запорным клапаном; 4 – газовый баллон 4 с запорным клапаном; 5 – заправочная горловина со встроенным фильтром и обратным клапаном; 6 – запорный клапан с клапаном отключения подачи газа, ограничителем потока газа, термическим предохранителем и запорным краном; 7 – трубопровод высокого давления; 8 – гибкий шланг; 9 – газовая распределительная магистраль; 10 – датчик газовой распределительной магистрали; 11 – форсунка; 12 – двигатель; 13 – двойное зажимное кольцо; 14 – клапан высокого давления; 15 – датчик давления газа; 16 – редуктор давления газа с клапаном высокого давления для работы на газе
Заправочная газовая горловина 5 оснащена обратным клапаном и металлическим фильтром. Газовые трубопроводы высокого давления 7 изготавливаются из нержавеющей стали и рассчитаны на давление до 1000 кгс/см2. Они соединяют приемный патрубок с первым запорным клапаном, все четыре запорных клапана между собой, а также последний запорный клапан с регулятором давления газа. Чтобы обеспечить достаточную герметичность газовых магистралей, отдельные детали на обеих сторонах соединяются при помощи двойного зажимного кольца 13. При заправке природный газ подается в заправочную горловину со встроенным фильтром и обратным клапаном далее по газовым магистралям к запорному клапану первого газового баллона. Одновременно с этим газ идет по газовым магистралям к запорному клапану второго газового баллона, оттуда дальше к запорным клапанам остальных баллонов. Из баллонов газ под высоким давлением поступает в редуктор давления газа. Если блок управления двигателя подает сигнал управления, открывается клапан высокого давления 14 редуктора высокого давления для работы на газе.
Редуктор давления газа должен обеспечивать снижение давления газа с 200 до 6 кгс/см2. Снижение давления в редукторе происходит в одной ступени.
Клапан высокого давления для работы на газе 7 представляет собой соленоид и при подаче на него напряжения или отсутствии такового открывает /закрывает доступ к ступени понижения давления газа регулятора давления газа. В обесточенном состоянии клапан высокого давления для работы на газе закрыт.
Датчик давления 4 в газовом баллоне измеряет текущее давление газа в системе на стороне высокого давления. Благодаря этим показаниям блок управления двигателя распознает уровень наполненности баллона.
В камере низкого давления 9 происходит переход давления газа от высокого давления к низкому давлению. Если клапан высокого давления для работы на газе открыт блоком управления двигателя, газ под высоким давлением поступает к поршню редуктора 10 в камере высокого давления 8. Поршень редуктора соединен с камерой низкого давления посредством подпружиненной мембраны 11.
Рис. Редуктор давления газа:
1 – ступень понижения давления; 2 – клапан избыточного давления; 3 – выход газа при низком давлении к двигателю; 4 – датчик давления в баллоне; 5 – вход газа при высоком давлении из газовых баллонов; 6 – фильтр; 7 – клапан высокого давления для режима эксплуатации на газе; 8 – камера высокого давления; 9 – камера низкого давления; 10 – поршень редуктора; 11 – мембрана; 12 – пружина
Если давление газа в камере низкого давления меньше 6 кгс/см2, то мембрана и поршень силой пружины поднимаются по направлению вверх. Поршень открывает соединение с камерой высокого давления. Газ, таким образом, поступает из камеры высокого давления в камеру низкого давления. Благодаря поступающему газу повышается давление в камере низкого давления. Как только давление достигает 6 кгс/см2, мембрана под действием давления возвращается в нижнее положение, преодолевая усилие пружины. Поршень, соединенный с мембраной, закрывает соединение с камерой высокого давления. Если происходит потребление газа двигателем, то давление в камере низкого давления падает. Пружина выталкивает мембрану опять по направлению вверх, поршень вновь открывается и газ снова поступает в камеру низкого давления.
Газовая распределительная магистраль оснащена электрическими форсунками подачи газа 11, расположенных во впускных каналах цилиндров, а также датчиком газовой распределительной магистрали 10. В режиме работы на газе они получают управление от блока управления двигателя при помощи сигнала с широтно-импульсной модуляцией. Время открытия форсунок зависит от частоты вращения коленчатого вала двигателя, нагрузки на двигатель, качество природного газа, давление газа в газовой распределительной магистрали.
Смесеобразование в режимах работы на газе и на бензине регулируется блоком управления двигателя по сигналам лямбда-зонда. В зависимости от качества газа блок управления двигателя проводит адаптацию смесеобразования. Лямбда-зонд измеряет состав ОГ и посылает полученные результаты на блок управления двигателя. На основании полученного сигнала блок управления двигателя рассчитывает требуемые пропорции смеси (воздух/газ). Для управления процессом смесеобразования блок управления двигателя изменяет время открытия клапанов подачи газа.
Клапаны отключения подачи газа представляют собой электромагнитные клапаны и получают управление с блока управления двигателя. Они являются составной частью запорных клапанов 6 и перекрывают доступ к газовым баллонам. При эксплуатации автомобиля на газе они открываются блоком управления двигателя, а в процессе заправки – от заправочного давления природного газа.
Запуск двигателя при температуре охлаждающей жидкости ниже 15°C осуществляется в режиме работы на бензине, а при температуре охлаждающей жидкости выше 15°C – на газе.
ustroistvo-avtomobilya.ru
Электронные системы питания двигателя, работающего на сжиженном нефтяном газе
Системы питания двигателей легковых автомобилей, работающих на сжиженном нефтяном газе, может работать как по принципу карбюрации, так и по принципу впрыска.
Система питания для сжиженного газа, работающая по принципу карбюрации
Система питания для сжиженного газа, работающая по принципу карбюрации, используется как на двигателях работающих на бензине, оборудованных карбюратором, так и на двигателях, оборудованных системой впрыска бензина. Система питания, работающая по принципу карбюрации при использовании ее на двигателях с электронным впрыском бензина, кроме основных элементов обычной системы впрыска содержит ресивер 2, редуктор-испаритель 6, серводвигатель для управления расходом газа 7, трубопровод для подачи газа в диффузор.
Рис. Система питания для сжиженного газа, работающая по принципу карбюрации, установленная на бензиновом двигателе с электронной системой впрыска:
1 – вентиляционная трубка для газового ресивера; 2 – ресивер с сжиженным газом; 3 – арматура газового ресивера; 4 – наполнительный клапан; 5 – клапан перекрытия газа; 6 – редуктор-испаритель; 7 – серводвигатель для управления расходом газа; 8 – электронный блок управления; 9 – переключатель вида используемого топлива «газ-бензин»; 10 – диффузор-смеситель; 11 – лямда-зонд; 12 – датчик разряжения; 13 – аккумуляторная батарея; 14 – выключатель зажигания; 15 – реле
При переключении на использование газа в качестве топлива, газ поступает из ресивера 2 в редуктор-испаритель, где происходит снижение давление газа и его испарение. В зависимости от сигналов, поступаемых от датчиков, блок управления выдает определенный сигнал на серводвигатель 7, определяющий расход газа на определенном режиме работы двигателя. Газ по трубопроводу поступает в диффузор, где смешивается с воздухом и проходит к впускному клапану, а затем в цилиндр двигателя. Для управления работой двигателя, предусматриваются отдельные блоки управления для работы двигателя на бензине и газе. Между обоими блоками управления идет обмен информацией.
Система питания для сжиженного газа, работающая по принципу впрыска
Система питания для сжиженного газа, работающая по принципу впрыска используется на двигателях, оборудованных системой впрыска бензина. Система питания для подачи сжиженного газа во впускной трубопровод содержит ресивер с газом, редуктор-испаритель 6, распределитель с шаговым электродвигателем, форсунок-смесителей 11.
Рис. Система впрыска сжиженного нефтяного газа (оборудование для работы на бензине не показано):
1 – электронный блок управления; 2 – диагностический разъем; 3 – переключатель для выбора типа используемого топлива; 4 – реле; 5 – датчик давления воздуха; 6 – редуктор-испаритель; 7 – клапан перекрытия подачи газа; 8 – распределитель с шаговым электродвигателем; 9 – прерыватель-распределитель или индуктивный датчик для определения частоты вращения коленчатого вала; 10 – лямбда-зонд; 11 – форсунки для впрыскивания газа
Газ из ресивера поступает в редуктор 6, где происходит испарение газа и снижение его давления. Ресиверы оборудуются наружным наполнительным (впускным) клапаном (с приспособлением, отсекающим подачу газа при заполнении ресивера на 80% его объема) и соленоидным выпускным клапаном. Емкости ресиверов для легковых автомобилей составляют от 40 до 128 л.
После выбора типа используемого топлива, с помощью переключателя 3 и включении зажигания, при использовании газа, срабатывает клапан 7 на подачу газа, который выключается после отключения зажигания.
В электронный блок управления 1 от датчика 5 поступает информация о разряжении во впускном трубопроводе, зависящего от степени открытия дроссельной заслонки, информация о частоте вращения коленчатого вала от датчика или прерывателя-распределителя 9, информация о составе топливовоздушной смеси от лямбда-зонда 9. На основании полученной информации блок управления определяет поворот угол поворота шагового распределителя, регулирующего расход газа, поступающего через форсунки 11 во впускной трубопровод.
ustroistvo-avtomobilya.ru
Назначение и конструкция система питания и её конструктивных элементов газовых двигателей
содержание .. 20 21 22 23 24 25 26 27 28 29 30 ..
19.
Назначение и конструкция система питания и её конструктивных элементов газовых двигателей
Топливо для газовых двигателей. Топливом для газовых двигателей являются сжатые и сжиженные газы.
Сжатые газы — газы, которые при обычной температуре окружающего воздуха и высоком давлении (до 20 МПа) сохраняют газообразное состояние. Сжатые газы являются природными. В качестве топлива для газовых двигателей обычно используется природный газ метан.
Сжиженные газы — газы, которые переходят из газообразного состояния в жидкое при нормальной температуре воздуха и небольшом давлении (до 1,6 МПа). Это нефтяные газы. Особенностью газовых двигателей является их способность работать также и на бензине.
Система питания газовых двигателей имеет специальное газовое оборудование. Имеется также дополнительная резервная система, обеспечивающая при необходимости работу газового двигателя на бензине. У них сложнее система питания, а при обслуживании в эксплуатации необходима более сложная техника безопасности. По сравнению с бензиновыми (карбюраторными) двигателями газовые более экономичны, менее токсичны, работают без детонаций, имеют более полное сгорание топлива и меньший износ деталей, срок их службы больше в 1,5...2 раза. Однако их мощность меньше на 10... 20 %, так как в смеси с воздухом газ занимает больший объем, чем бензин.
Конструкции систем питания газовых двигателей и их работа на сжатом газе. В систему питания двигателя, работающего на сжатом газе (рис. 2.61), входят баллоны 1 для сжатого газа. Наполнительный 5, расходный 6 и магистральный 18 вентили, подогреватель 17 газа, манометры высокого 8 и низкого 9 давления, редуктор 11 с фильтром 10 и дозирующим устройством 12, газопроводы высокого 3 и низкого 13 давления, карбюратор-смеситель 14 и трубка 19, соединяющая разгрузочное устройство с впускным трубопроводом двигателя.
Рис. 2.61. Схема системы питания двигателя, работающего на сжатом газе: 1 — баллон; 2 — тройник; 3, 13 —газопроводы; 4 — крестовина; 5, 6,18 — вентили; 7 — топливный бак; 8,9 — манометры; 10 — газовый фильтр; 11— газовый редуктор; 12 — дозирующее устройство; 14 — карбюратор-смеситель; 15 — топливопровод; 16 — топливный насос; 17— подогреватель; 19 — трубка;
20 — двигатель
При работе двигателя вентили 6 и 18 открыты. Сжатый газ из баллонов поступает в подогреватель 17, обогреваемый отработавшими газами, нагревается и через фильтр 10 проходит в двухступенчатый газовый редуктор 11. В редукторе давление газа снижается до 0,9... 1,15 МПа. Из редуктора через дозирующее устройство 12 газ проходит в карбюратор-смеситель 14, где и образуется горючая смесь (газовоздушная). Смесь под действием вакуума поступает в цилиндры двигателя.
Процесс сгорания смеси и отвода отработавших газов происходит так же, как в карбюраторных двигателях. Редуктор 11 кроме уменьшения давления газа изменяет его количество в зависимости от режима работы двигателя. Он быстро выключает подачу газа при остановке двигателя.
Кроме основной имеется резервная система питания, обеспечивающая работу двигателя на бензине в необходимых случаях (неисправности системы, израсходован весь газ в баллонах и др.). При этом длительная работа двигателя на бензине не рекомендуется, так как в резервной системе питания отсутствует воздушный фильтр, что может привести к повышенному износу двигателя. В резервную систему питания входят топливный бак 7, топливный фильтр, топливный насос 16 и топливопроводы 15.
Системы питания двигателя, работающего на сжиженном газе. Схема системы питания двигателя, работающего на сжиженном газе, показана на рис. 2.62.
Рис. 2.62. Схема системы питания двигателя, работающего на сжиженном газе: 1 — топливный фильтр; 2 — топливный насос; 3 — карбюратор; 4 — смеситель; 5 — испаритель; 6 — газовый фильтр; 7 — дозирующее устройство; 8 — газовый редуктор; 9, 10 — манометры; 11,13 — вентили; 12 — баллон; 14 — двигатель;
15 — топливный бак
Сжиженный газ под давлением из баллона 12 поступает через расходный 13 и магистральный 11 вентили в испаритель 5. В испарителе газ подогревается горячей жидкостью системы охлаждения двигателя и переходит в газообразное состояние. Затем газ очищается в фильтре 6, поступает в двухступенчатый редуктор 8, где давление газа снижается до атмосферного. Из редуктора газ через дозирующее устройство 7 проходит в смеситель 4, который готовит горючую смесь в соответствии с режимом работы двигателя.
Газовый баллон имеет предохранительный клапан, открывающийся при давлении 1,68 МПа, наполнительный вентиль и датчик уровня сжиженного газа. Баллон заполняется сжиженным газом только на 90 % объема. Это необходимо для возможности расширения газа при нагреве.
Кроме основной системы питания двигатель, работающий на сжиженном газе, имеет резервную систему питания для кратковременной работы на бензине. В резервную систему входят топливный бак 15, топливный фильтр 1, топливный насос 2 и карбюратор 3.
Подключение устройств работающих на сжиженном газе. При использовании в качестве топлива сжиженного газа на автомобиле монтируется газобаллонная установка (рис. 8.36), состоящая из баллона для хранения газа, редуктора-испарителя, смесителя и системы клапанов.
Рис. 8.36. Схема системы питания с газобаллонной установкой: 1 — аккумулятор; 2 — катушка зажигания; 3 — бензонасос; 4 — электрическая цепь; 5 — радиатор отопитель; 6 — шланг подачи жидкости; 7 — предохранитель; 8 — переключатель вида топлива; 9 — замок зажигания; 10 — редуктор-испаритель низкого давления; 11 — шланг низкого давления; 12 — электромагнитный газовый клапан с фильтром; 13 —тройник-дозатор; 14 — шланг подачи бензина; 15 — вакуумный шланг; 16 — электромагнитный бензиновый клапан; 17— патрубки; 18 — коллектор двигателя; 19 — карбюратор; 20 — воздушный фильтр; 21 — гибкий газопровод высокого давления; 22 — баллон для сжиженного газа; 23 — блок запорно-предохранительной арматуры; 24 — рукав вентиляционный
Сжиженный газ под давлением 1,6 МПа (16 кгс/см2) из баллона 22 по гибкому газопроводу высокого давления поступает в газовый фильтр. Далее очищенный газ по трубопроводу проходит в первую ступень двухступенчатого редуктора-испарителя 10, где давление понижается до 0,2 МПа, а затем во вторую ступень, где оно понижается до значения, близкого к атмосферному. Под действием разрежения, создаваемого в коллекторе 18 работающего двигателя, газ из полости второй ступени редуктора испарителя поступает в дозирующее устройство и по шлангу низкого давления через тройник дозатор поступает в карбюратор 19. После смешения газа с воздухом образуется однородная горючая смесь, которая поступает в цилиндры двигателя.
содержание .. 20 21 22 23 24 25 26 27 28 29 30 ..
sinref.ru