Ограничитель тока заряда аккумулятора
Три простые схемы регулятора тока для зарядных устройств
Мы уже рассматривали много схем регуляторов напряжения для самых разных целей, сегодня же я вам покажу три простые схемы регуляторов постоянного тока, которые стоит взять на вооружение, так как они универсальны и могут быть использованы не только в зарядных устройствах, но и во многих самодельных конструкциях, включая и лабораторные блоки питания.
Регулятор тока по идее не многим отличается от регулятора напряжения, стоит заметить, что есть понятие стабилизатор тока.
В отличие от регулятора он поддерживает стабильный выходной ток независимо от напряжения на входе и выходной нагрузки.
Сегодня мы рассмотрим пару вариантов стабилизатора и один регулятор общего применения, стабилизатор тока неотъемлемая часть любого нормального лабораторного блока питания или зарядного устройства, предназначен он для ограничения тока подаваемого в нагрузку.
Важный момент… во всех трех вариантах в качестве датчика тока использованны шунты, по сути это низкоомные резисторы, для увеличения выходного тока любой из перечисленных схем нужно будет снизить сопротивление шунта экспериментальным образом.
Кстати ссылки на все печатные платы найдёте в конце статьи. Нужное значение тока выставляют вручную, как правило вращением переменного резистора.
Все три варианта которые мы сегодня рассмотрим работают в линейном режиме, а значит силовой элемент — транзистор. При больших нагрузках будет нагреваться и нуждается в охлаждении.
Постараюсь пояснить принцип работы схем максимально простыми словами…
Первая схема отличается максимальной простотой и доступностью компонентов, всего два транзистора, один из них управляющий, второй же является силовым, по которому протекает основной ток.Датчик тока или шунт представляет из себя низкоомный проволочный резистор, при подключении выходной нагрузки на этом резисторе образуется некоторое падение напряжения, чем мощнее нагрузка, тем больше падение.
Такого падения напряжения достаточно для срабатывания управляющего транзистора, чем больше падение, тем больше приоткрыт этот транзистор.
Резистор R1 задаёт напряжение смещения для силового транзистора, именно благодаря ему основной транзистор находится в открытом состоянии.
Ограничение тока происходит за счет того, что напряжение на базе силового транзистора, которое было образовано резистором R1, грубо говоря затухается или замыкается на плюс питания через открытый переход маломощного транзистора. Этим силовой транзистор будет закрываться, следовательно ток протекающий по нему уменьшается вплоть до полного нуля.
Резистор R2 по сути обычный делитель напряжения, которым мы можем задать как бы степень приоткрытости управляющего транзистора, а следовательно управлять и силовым транзистором, ограничивая ток протекающий по нему.
Увеличить общий ток коммутации этой схемы, можно дополнительными силовыми транзисторами, подключенных параллельно.
Так как характеристики даже одинаковых транзисторов будут отличаться, в их коллекторную цепь добавлены резисторы, они предназначены для выравнивания токов через транзисторы, чтобы последние были нагружены равномерно.
Вторая схема построена на базе операционного усилителя, её неоднократно использовал в зарядных устройствах для автомобильных аккумуляторов, в отличие от первого варианта эта схема является именно стабилизатором тока.Как и в первой схеме, тут также имеется датчик тока или шунт, операционный усилитель фиксирует падение напряжения на этом шунте, всё по уже знакомой нам схеме.
Усилитель сравнивает напряжение на шунте с опорным, которое задается стабилитроном. Переменным резистором мы искусственно меняем опорное напряжение, операционный усилитель в свою очередь постарается сбалансировать напряжение на входах, путём изменения выходного напряжения.
Выход операционного усилителя управляется мощным полевым транзистором.
То есть, принцип работы мало, чем отличается от первой схемы за исключением того, что тут имеется источник опорного напряжения в лице стабилитрона.
Эта схема также работает в линейном режиме и силовой транзистор при больших нагрузках будет сильно нагреваться и ему необходим радиатор, кстати возможно применение биполярных транзисторов.
Последняя схема построена на базе популярной интегральной микросхемы стабилизатора LM317, это линейный стабилизатор напряжения но имеется возможность использовать микросхему в качестве стабилизатора тока.Нужный ток задается переменным резистором. Недостатком схемы является то, что основной ток протекает именно по ранее указанному резистору и естественно тот нужен мощный, очень желательно использование проволочных резисторов.
Введите электронную почту и получайте письма с новыми поделками.
Максимально допустимый ток для микросхема LM317 составляет около полтора ампера, увеличить его можно дополнительным силовым транзистором, в этом случае микросхема уже будет в качестве управляющей, следовательно нагреваться она не будет.
Взамен будет нагреваться транзистор и от этого никуда не денешься.
Архив к статье; скачать…
Автор; АКА Касьян
xn--100--j4dau4ec0ao.xn--p1ai
Зарядное устройство для аккумуляторов, с установкой тока и напряжения заряда

Предлагается вариант изготовления зарядного устройства аккумуляторов для бытовых приборов, с установкой тока и напряжения зарядки, со стабилизацией тока на нагрузке.
При периодическом проживании в летнем доме, иногда появляется необходимость в подзарядке различных источников питания для часов, приемника, фонарика. Кроме того, требуют заряда и Li-ion аккумуляторы от старых мобильных телефонов, используемые в изготовленных ранее самоделках. Учитывая то, что используемые аккумуляторы имеют различную форму, габариты и присоединительные размеры, а также различные режимы заряда, необходимо изготовить, в какой-то мере, универсальное зарядное устройство (ЗУ). Так как это ЗУ будет использоваться лишь периодически, изготовлять или приобретать специализированные ЗУ для каждого вида аккумуляторов не имеет смысла.
В связи с этим, для зарядки различных маломощных аккумуляторов, изготовим единое, упрощенное, но надежное зарядное устройство. При зарядке аккумуляторов под периодическим визуальным контролем над окончанием заряда, имея возможность установки режимов (величина стабильного тока и предельное напряжение заряда) такое ЗУ обеспечит качественную работу.
Процесс изготовления зарядного устройства для выполнения поставленной задачи рассмотрен ниже.
1. Установка исходных данных.
Для правильной эксплуатации никель-металлогидридных аккумуляторов рекомендуется поддерживать рабочее напряжение на элементах в пределах 1,2…1,4 вольта, допускается предельное снижение до 0,9 вольта. Быструю зарядку NiMH элементов батарей рекомендуется проводить при напряжении 0,8…1,8 вольта, с величиной тока заряда в интервале 0,3…0,5С.
Рабочее напряжение для Li-ion аккумулятора 3,0...3,7 вольта. Зарядку аккумулятора необходимо выполнять до предельного напряжения 4,2 вольта, с током заряда в интервале 0,1...0,5С (до 450 mA при емкости аккумулятора 900 mAh).
Учитывая рекомендации, установим следующие характеристики изготовляемого ЗУ:
Выходное напряжение 1,3...1,8 вольта (для NiMH аккумулятора).
Выходное напряжение 3,5...4,2 вольта (для Li-ion аккумулятора).
Выходной ток (регулируемый) – 100...400 mA (…900 mA).
Входное напряжение - 9...12 вольт.
Входной ток - 400 mA (1000 mA).
2. Источник тока.
В качестве источника тока для ЗУ применим мобильный адаптер 220/9 вольт, 400 mA. Можно использовать более мощный адаптер (например, 220/1,6...12 вольт, 1000 mA). При этом изменений в конструкции ЗУ не потребуется.

3. Схема зарядного устройства.
Схема ЗУ проста в изготовлении и наладке, не имеет дефицитных и дорогих деталей. Устройство позволяет заряжать различные аккумуляторы стабильным, заранее установленным, током. А также, до начала зарядки, можно установить предельное напряжение, выше которого оно не поднимется на клеммах аккумулятора, в течении всего процессе зарядки.
Изготовим ЗУ по схеме.

4. Описание работы схемы ЗУ.
Узел управления выходным током построен на силовом составном транзисторе VТ1. Максимальную величину выходного тока заряда ограничивает низкоомный резистор R7 (при номиналах деталей указанных на схеме и соответствующем по мощности блоке питания, максимальный ток заряда Li-ion аккумулятора достигает 1,2 А). При отсутствии резистора, необходимого сопротивления и мощности, его можно собрать из нескольких дешевых и распространённых резисторов. Например, в приведенной конструкции, трехваттный резистор R7 сопротивлением 3,4 Ом собран из двух последовательно соединенных групп, по три параллельно включенных резистора МЛТ-1 сопротивлением 5,1 Ом.
На транзисторе VТ2 и резисторах R5, R6 реализован стабилизатор и регулятор зарядного тока. Переменный резистор R6 включен параллельно ограничительному резистору R7 и является датчиком тока. Ток через резистор R6 пропорционален току через резистор R7, но благодаря соотношению сопротивлений имеет значительно меньшую величину, что позволяет управлять выходным током с помощью переменного резистора и транзистора малой мощности.
Под нагрузкой, на датчике тока появляется падение напряжения, пропорциональное проходящему току. При изменении тока зарядки, по различным причинам, соразмерно изменяется падение напряжения на R6 и соответственно управляющее напряжение на базе транзистора VТ2.
При увеличении напряжения на базе VТ2, увеличивается ток К-Э транзистора VT2, снижая напряжение на базе VТ1. При этом, силовой транзистор VT1 начинает закрываться, уменьшая зарядный ток аккумулятора. И наоборот, при уменьшении напряжения на базе VТ2, зарядный ток увеличивается. Таким образом, осуществляется автоматическая корректировка тока в нагрузке - стабилизация тока заряда.
Изменяя сопротивление резистора R6, мы можем установить необходимый ток заряда аккумулятора. После регулировки, происходят аналогичные процессы стабилизации вновь установленного тока.
Узел установки предельного напряжения выполнен на регулируемом стабилизаторе напряжения DA1 (TL431). Подбирая сопротивление резисторов R3 и R4, выбираем оптимальный диапазон регулирования напряжения. С помощью переменного резистора R4 устанавливаем предельное напряжение на выходе (до подключения аккумулятора к ЗУ).
При подсоединении разряженного аккумулятора к ЗУ, напряжение на выходе понижается. Через аккумулятор начинает проходить ток, установленный с помощью резистора R6. По мере заряда и повышения напряжения на аккумуляторе, потенциал на управляющем электроде стабилитрона DA1 приближается к 2,5 вольт, стабилитрон TL431 начинает открываться. При этом, напряжение на базе VТ1 постепенно понижается, силовой транзистор закрывается, а ток зарядки, протекающий по нему, постепенно уменьшаться практически до нуля.
В разъем Х2 включается амперметр (мультиметр) для установки и контроля зарядного тока, при зарядке однотипных элементов вместо него устанавливается перемычка.

Разъем Х3 используется для установки Li-ion аккумулятора от мобильного телефона. В разъем Х4 возможно установить аккумуляторы цилиндрической формы различной длины, с напряжением 1,2…1,4 вольта. Диоды VD1 и VD2 включены в цепь разъема X4, для понижения напряжения заряда аккумулятора до 1,3...1,8 вольта и предотвращения разряда аккумуляторов при отключении ЗУ. С помощью выносных щупов с зажимом, можно подключить для зарядки нестандартный аккумулятор с рабочим напряжением до 6… 9 вольт.
5. Изготовление корпуса зарядного устройства
Для корпуса ЗУ используем пластмассовую крышку от старого реле, размерами 90 х 60 х 65 мм. Усиливаем корпус панелью из текстолита для установки разъемов. Сверлим необходимые крепежные отверстия.


6. Комплектуем корпус разъемами и изготовляем нестандартные элементы.

7. Собираем корпус с навесными элементами. На задней панели расположены разъемы - контрольный Х2 (внизу) и входной Х1для соединения с адаптером питания ЗУ. Наверху корпуса расположена панель для установки Li-ion аккумулятора.


8. На передней стороне ЗУ закреплены ложемент и контакты для установки цилиндрических аккумуляторов.

9. Комплектуем ЗУ деталями согласно приведенной схеме.
Откладываем детали, имеющие большое тепловыделение. В данном случае это силовой транзистор VТ1 на радиаторе и сборный резистор R7, составленный из шести резисторов меньшей мощности. Для улучшения температурного режима, собираем эти детали на отдельной плате. Остальные детали устанавливаем и распаиваем на второй плате.
Размеры плат определяются внутренними размерами корпуса и их расположением в объеме корпуса. Определившись с расположением плат, сверлим в корпусе отверстия под переменные сопротивления и вентиляционные отверстия для отвода тепла.



10. Сборка ЗУ
Согласно схеме ЗУ собираем вместе силовую и управляющую платы, проверяем работоспособность схемы.
Устанавливаем и закрепляем все комплектующие ЗУ в корпусе. Для исключения возможного электрического контакта, изолируем от окружения управляющую плату пластмассовым колпачком.
Собираем конструкцию ЗУ в целом и проверяем работу устройства.





11. Работа зарядного устройства.
До подключения Li-ion аккумулятора к ЗУ, с помощью переменного резистора R4 (регулировка напряжения) устанавливаем предельное напряжение заряда на выходных клеммах для этого аккумулятора.

Подключаем аккумулятор, напряжение на выходе понижается до остаточного напряжения на аккумуляторе. Регулировкой сопротивления резистора R6 (регулировка тока), устанавливаем необходимый зарядный ток.
При установке элемента аккумулятора цилиндрической формы, процесс выбора режимов аналогичен.
При включении ЗУ, до установки аккумулятора, открывается стабилизатор напряжения DA1 (напряжение на управляющем электроде стабилитрона выше 2,5 вольт) и загорается светодиод LED2 (красный индикатор, слева).

Подключаем аккумулятор, напряжение на выходе понижается. Начинается зарядка установленным стабильным током. Светодиод LED2 гаснет. В зависимости от установленного тока, возможно некоторое свечение светодиода LED3 (красный индикатор, справа).

При достижении выставленного напряжения, заряд продолжается при этом напряжении, но с уменьшающимся током заряда. Яркость светодиода LED3 возрастает, включается светодиод LED2. Максимальная яркость светодиодов LED2 и LED3 указывает на минимальный зарядный ток, свойственный окончанию зарядки аккумулятора.


usamodelkina.ru
Схема ограничителя тока к любому зарядному устройству
В любом самодельном зарядном устройстве, выполненным для заряда автомобильного аккумулятора, должен быть ограничитель тока и стабилизация.
Такое дополнение нужно нам для выставления любого тока заряда. В этой статье я расскажу вам, как сделать это простое дополнение, вернее схему к любому зарядному устройству, схема проверенная, отлично работает со всеми зарядными устройствами.
Схема блока довольно простая и собрана всего на одном операционном усилителе. ЗУ должно отдавать ток до 10 ампер и работать в диапазоне напряжений от 13,5 до 14,5 Вольт.
Силовым элементом данной схемы является один полевой транзистор, через который будет проходить весь ток, поэтому его нужно устанавливать на радиатор. Экспериментально сначала схему я собирал на макетной плате…В схеме желательно использовать полевые транзисторы с током от 40 ампер, но подойдёт и с током от 20 ампер.
В нашей схеме отлично зарекомендовали себя такие транзисторы как IRFZ44, IRFZ46, IRFZ48, IRF3205 и аналогичные.Я использовал шунт от китайского мультиметра он даёт довольно точные замеры при токах 10-14 ампер. Вы можете использовать другие шунты например низкоомный резистор или что-то подобное.
Транзистор так же можно заменить на биполярный, если брать наши транзисторы, то отлично подходят такие как КТ8101 или КТ819ГМ, но также не забудьте поставить их на радиатор. Операционный усилитель я взял ЛМ358, сдвоенный, но как показала практика можно взять и одиночный к примеру TLO71 или TL081.Всё остальное делается, как обычно, я думаю, что в остальном никаких вопросов возникнуть не должно. Приставка к зарядному устройству работает сразу и не требует никаких настроек.
Автор: Ака Касьян
xn--100--j4dau4ec0ao.xn--p1ai
Зарядное устройство для автомобильного аккумулятора своими руками
Тема автомобильных зарядных устройств интересна очень многим. Из статьи вы узнаете, как переделать компьютерный блок питания в полноценное зарядное устройство для автомобильных аккумуляторов. Оно будет представлять собой импульсное зарядное устройство для аккумуляторов с емкостью до 120 А·ч, то есть зарядка будет довольно мощной.
Собирать практически ничего не нужно – просто переделывается блок питания. К нему добавится всего один компонент.
Компьютерный блок питания имеет несколько выходных напряжений. Основные силовые шины имеют напряжение 3,3, 5 и 12 В. Таким образом, для работы устройства понадобится 12-вольтовая шина (желтый провод).
Для зарядки автомобильных аккумуляторов напряжение на выходе должно быть в районе 14,5-15 В, следовательно, 12 В от компьютерного блока питания явно маловато. Поэтому первым делом необходимо поднять напряжение на 12-вольтовой шине до уровня 14,5-15 В.
Затем, нужно собрать регулируемый стабилизатор тока или ограничитель, чтобы была возможность выставить необходимый ток заряда.
Зарядник, можно сказать, получится автоматическим. Аккумулятор будет заряжаться до заданного напряжения стабильным током. По мере заряда сила тока будет падать, а в самом конце процесса сравняется с нулем.
Приступая к изготовлению устройства необходимо найти подходящий блок питания. Для этих целей подойдут блоки, в которых стоит ШИМ-контроллер TL494 либо его полноценный аналог K7500.
Когда нужный блок питания найден, необходимо его проверить. Для запуска блока нужно соединить зеленый провод с любым из черных проводов.
Если блок запустился, нужно проверить напряжение на всех шинах. Если все в порядке, то нужно извлечь плату из жестяного корпуса.
После извлечения платы, необходимо удалить все провода, кроме двух черных, двух зеленого и идет для запуска блока. Остальные провода рекомендуется отпаять мощным паяльником, к примеру, на 100 Вт.
На этом этапе потребуется все ваше внимание, поскольку это самый важный момент во всей переделке. Нужно найти первый вывод микросхемы (в примере стоит микросхема 7500), и отыскать первый резистор, который применен от этого вывода к шине 12 В.
На первом выводе расположено много резисторов, но найти нужный — не составит труда, если прозвонить все мультиметром.
После нахождения резистора (в примере он на 27 кОм), необходимо отпаять только один вывод. Чтобы в дальнейшем не запутаться, резистор будет называться Rx.
Теперь необходимо найти переменный резистор, скажем, на 10 кОм. Его мощность не важна. Нужно подключить 2 провода длиной порядка 10 см каждый таким образом:
Один из проводов необходимо соединить с отпаянным выводом резистора Rx, а второй припаять к плате в том месте, откуда был выпаян вывод резистора Rx. Благодаря этому регулируемому резистору можно будет выставлять необходимое выходное напряжение.
Стабилизатор или ограничитель тока заряда очень важное дополнение, которое должно иметься в каждом зарядном устройстве. Этот узел изготавливается на базе операционного усилителя. Тут подойдут практически любые «операционники». В примере задействован бюджетный LM358. В корпусе этой микросхемы два элемента, но необходим только один из них.
Пару слов о работе ограничителя тока. В этой схеме операционный усилитель применяется в качестве компаратора, который сравнивает напряжение на резисторе с низким сопротивлением с опорным напряжением. Последнее задается при помощи стабилитрона. А регулируемый резистор теперь меняет это напряжение.
При изменении величины напряжения операционный усилитель постарается сгладить напряжение на входах и сделает это путем уменьшения или увеличения выходного напряжения. Тем самым «операционник» будет управлять полевым транзистором. Последний регулирует выходную нагрузку.
Полевой транзистор нужен мощный, поскольку через него будет проходить весь ток заряда. В примере используется IRFZ44, хотя можно использовать любой другой соответствующих параметров.
Транзистор обязательно устанавливается на теплоотвод, ведь при больших токах он будет хорошенько нагреваться. В этом примере транзистор просто прикреплен к корпусу блока питания.
Печатная плата была разведена на скорую руку, но получилось довольно неплохо.
Теперь остается соединить все по картинке и приступить к монтажу.
Напряжение выставлено в районе 14,5 В. Регулятор напряжения можно не выводить наружу. Для управления на передней панели имеется только регулятор тока заряда, да и вольтметр тоже не нужен, поскольку амперметр покажет все, что надо видеть при зарядке.
Амперметр можно взять советский аналоговый или цифровой.
Также на переднюю панель был выведен тумблер для запуска устройства и выходные клеммы. Теперь можно считать проект завершенным.
Получилось несложное в изготовлении и недорогое зарядное устройство, которое вы можете смело повторить сами.
Автор: АКА КАСЬЯН.
Прикрепленные файлы: СКАЧАТЬ.
volt-index.ru
Сообщества › Электронные Поделки › Блог › Устройство для зарядки АКБ асимметричным, реверсивным током.
Всем привет, как то не давно безцельно коротая время на просторах интернета случайно наткнулся на инфу про якобы оживление полумертвых свинцовых аккумуляторов. И в отличии от других статей на эту тему эта, как то зацепила, там были графики, какие то заключения по хим-процессам в аккумуляторе. Пересказывать все не буду, в вообщем смысл в том, что акб заряжается процентов до 70, как обычно, а дальше реверсивным током. Реверсивный от слова реверс, т.е ток меняет свое направление. Весь процесс разбит на циклы зарядка, разрядка. Так же метод называется асимметричным, так как ток зарядки больше тока разрядки.
Вот график


Полный размер
Каких то фиксированных значений для величин на графике я не нашел. У меня получилось так tз=23с, tр=11c, ток зарядки выставляю примерно 5а и по мере заряда он падает, ток разряда 1.7а (лампа 21Вт).
Схема устройства которое может дать такой график тока на самом деле очень проста.

Полный размер
Схема
Здесь мы видим генератор прямоугольных импульсов на базе NE555 и пятиконтактное реле. Номиналы частотозадающих компонентов подобраны так, что на выходе микросхемы 23 секунды высокий уровень и 11 секунд низкий, таким образом длинна периода примерно 34 секунды. Но благодаря включению частотозадающую цепь переменного резистора и двух диодов VD1 и VD2 соотношение длительности высокого и низкого уровня можно менять в некотором диапозоне.

Полный размер
NE555
Выход микросхемы я усилил небольшим транзистором, который в свою очередь и управляет реле.

Полный размер
транзистор

Полный размер
реле
Ну а дальше все просто, в зависимости высокий или низкий уровень на выходе нашей микросхемы, реле переключает плюс аккумулятора то на зарядное, то на разрядную лампу.

Полный размер
Вся данная схема питается через 12-ти вольтовый стабилизатор, поэтому аккумулятор можно заряжать хоть до 30 вольт.

Полный размер
Ну собственно общий вид платы

Полный размер

Полный размер
И схема подключения

Полный размер
Несколько фотографий процесса работы данной платы

Полный размер
Идет заряд аккумулятора (ток течет в прямом направлении)

Полный размер
Разрядка аккумулятора (ток течет обратно)
Более подробно процесс работы можно посмотреть на видео в конце записи.
Как утверждаю некие иследователи, при таком методе заряда не происходит выкипание воды из электролита, уменьшается нагрев аккумулятора при заряде до высоких напряжений, уменьшается гидролиз поэтому подьем плотность происходит не за чет уменяшения обьема воды, а за счет растворения кристалов сульфата на пластинах акб.
Лично я не могу не подтвердить не апровергнуть не одно из вышесказанного, так как что бы увидеть хоть какойто результат по улучшению состояния пластин и емкости акб надо довольно тренировать акб таким образом.
ЭТО ЛИЧНО МОЕ МНЕНИЕ, и оно может быть не верно.
Ну что друзья всем пока. Если есть у кого опыт зарядки таким способом напишите в коменнтах.
www.drive2.ru
Схема простого зарядного для АКБ с автовыключением
Привет всем, в этой статье хочу предложить вашему вниманию простую схему зарядного устройства с автоматическим выключением по завершению заряда АКБ. То есть просто поставил зарядное на ночь или на время и не надо следить за ним, зарядка сама отключиться, когда достигнет порог напряжения заряженного АКБ.
Схема не сложная, в ней всего используется один не мощный транзистор для определения напряжения на аккумуляторе, R1 обычный резистор на 4.7 Ком, P1 подстроечный резистор на 10 Ком. В качестве транзистора Т1 можно использовать КТ815 или аналоги.
Реле на 12 вольт 400 ом, можно взять простое автомобильное реле.
Трансформатор TR1 имеет напряжение вторичной обмотки 13.5 -14.5 вольт. Ток надо брать 1\10 от ёмкости АКБ, например если аккумулятор на 60 ампер, то ток соответственно 6 ампер.
Диодный мост D1-D4 надо на ток равный номинальному току трансформатора, то есть в данном случаи не менее 6 ампер, это например такие как Д242, КД213, их нужно устанавливать на радиаторе. Диод обозначенный D1, который стоит параллельно реле и диоды D5 и D6 можно брать наши КД105 или буржуйский аналог 1N4007.
Конденсатор С1 на 100 мкф. 25 вольт, резисторы R2, R3 по 3 кОм. HL1 и HL2 это индикаторы зарядки и ограничения зарядового тока, в качестве них можно взять например красный и зелёный светодиоды. Ну и амперметр для контроля тока.
Ток равный 1\10 от ёмкости АКБ подбирается количеством витков на вторичной обмотке трансформатора. При намотке вторички, необходимо сделать несколько отводков или отводов))) для подбора оптимального варианта зарядного тока.
Заряд автомобильного АКБ считается законченным, когда напряжение на его контактах достигнет 14.4 вольта. Порог отключения подстраивается подстроечным резистором P1 при подключенном и полностью заряженном аккумуляторе.При зарядке разряженного аккумулятора напряжение на нём будет 12-13 вольт, в процессе зарядки ток будет падать, а напряжение расти. Когда напряжение достигнет 14.4 вольта транзистор Т1 отключит реле и цепь заряда будет разорвана.
При снижении напряжения до 11.4 вольт, зарядка снова возобновляется, такой принцип обеспечивают диоды D5, D6 в эмиттере транзистора.
Введите электронную почту и получайте письма с новыми поделками.
Такое простое, автоматическое, зарядное устройство поможет вам проконтролировать процесс зарядки, без вашего участия, поставил на зарядку и будьте уверены ваш АКБ не перезарядиться, а зарядиться до нужного значения.
Кстати, если кто хочет приобрести сразу готовую зарядку на АЛИ за 1500р, пока там скидки, вот ссылка http://ali.pub/1m8q9j
xn--100--j4dau4ec0ao.xn--p1ai
Сообщества › Электронные Поделки › Блог › Защита Аккумулятора от глубоко разряда…

Полный размер
Защита Аккумулятора от глубоко разряда…
Схема не моя. Только повторю… Используйте куда надо… Регистраторы, магнитолы и т.д. …
УСТРОЙСТВО для защиты 12v аккумуляторов от глубокого разряда и короткого замыкания с автоматическим отключением его выхода от нагрузки.
ХАРАКТЕРИСТИКИ
Напряжение на аккумуляторе, при котором происходит отключение — 10± 0.5V.(У меня вышло ровно 10,5 В)
Ток, потребляемый устройством от аккумулятора во включенном состоянии, не более — 1мА
Ток, потребляемый устройством от аккумулятора в выключенном состоянии, не более — 10мкА
Максимально допустимый постоянный ток через устройство — 5А.(30 Ватт лампочка 2,45 А — Мосфит без радиатора +50 градусов(комнатная +24))
Максимально допустимый кратковременный (5 сек) ток через устройство — 10А
Время выключения при коротком замыкании на выходе устройства, не более — 100 мкс
ПОРЯДОК РАБОТЫ УСТРОЙСТВА
Подключите устройство между аккумулятором и нагрузкой в следующей последовательности:
— подключите клеммы на проводах, соблюдая полярность (оранж. провод +(красный), к аккумулятору,
— подключите к устройству, соблюдая полярность (плюсовая клемма помечена значком +), клеммы нагрузки.
Для того чтобы на выходе устройства появилось напряжение нужно кратковременно замкнуть минусовой выход на минусовой вход. Если нагрузку кроме аккумулятора питает другой источник, то этого делать не надо.
УСТРОЙСТВО РАБОТАЕТ СЛЕДУЮЩИМ ОБРАЗОМ;
При переходе на питание от аккумулятора, нагрузка разряжает его до напряжения срабатывания устройства защиты (10± 0.5V). При достижении этой величины, устройство отключает аккумулятор от нагрузки, предотвращая дальнейший его разряд. Включение устройства произойдет автоматически при подаче со стороны нагрузки напряжения для заряда аккумулятора.
При коротком замыкании в нагрузке устройство также отключает аккумулятор от нагрузки, Включение его произойдет автоматически, если со стороны нагрузки подать напряжение больше 9,5V. Если такого напряжения нет, то надо кратковременно перемкнуть выходную минусовую клемму устройства и минус аккумулятора. Резисторами R3 и R4 устанавливается порог срабатывания.
Запчасти
1. Монтажная плата(не обязательно, можно навесу)
2. Полевой транзистор любой, подбирайте по А и В. Я взял RFP50N06 N-канал 60В 50А 170 град [TO-220AB]
3. Резисторы 3 на 10 ком, и 1 на 100 ком
4. Биполярный транзистор КТ361Г
5. Стабилитрон 9.1 В
Доп. Можно клеммы + Микрик для запуска.(Я себе не делал т.к. у меня это будет часть другого устройства)
6. Можно по светодиоду на вход и выход для наглядности(Подбирайте резистор, паяйте в параллельно)
Паяльник+олово+спиртоканифоль+кусачки+проводки+мультиметр+нагрузка и т.д. и т.п
Паял Оловянно-сопельным путём. Травить на плате мне не охота . Лейаута нет.
Нагрузка 30 Ватт, Ток 2,45 А полевик греется на +50 град(комнатная +24). Охлаждение не нужно.
Побывал нагрузку 80 Ватт … ВАХ-ВАХ. Температура за 120 град. Дорожки начали краснеть… Ну сами знаете нужно радиатор, Хорошо пропаянные дорожки.
Всем удачи. Будут вопросы задавайте.


Полный размер

Полный размер

Полный размер

Полный размер

Полный размер

Полный размер

Полный размер

Полный размер

Полный размер

Полный размер

Полный размер

Полный размер
www.drive2.ru
Регулятор тока зарядного устройства – Поделки для авто
В конструкции самодельного зарядного устройства для автомобильного аккумулятора важной частью является узел стабилизации и ограничения тока. Такой узел дает возможность выставить любой угодный ток заряда, при этом будет делать это за счет повышения или понижения выходного напряжения.
Схема предложенная в статье может отлично работать в совместимости с любым зарядным устройством.
Вариант реализации такого блока до безобразия прост и собран на одном элементе ОУ.
Зарядное устройство должно отдавать напряжение 13,5-14,5 Вольт при токе до 10 Ампер.
Полевой транзистор – основной силовой элемент и весь ток проходит по нему, поэтому обязательно устанавливают на теплоотвод.
Можно использовать низковольтные полевые транзисторы с током от 20 , а еще лучше от 40 Ампер. Для наших целей отлично подойдут мощные N- канальные полевые транзисторы типа IRF3205, IRFZ44/46/48 iили аналогичные.
Силовой шунт в моем случая в виде низкоомного резистора, если кому лень искать, можете использовать шунт , который стоит в дешевых китайских мультиметрах, такие шунты можно использовать для довольно точных замеров при токах до 10-14Ампер.
Полевой транзистор при желании можно заменить на биполярный, но с учетом того, что последний должен иметь большой ток коллектора, к примеру КТ819ГМ или КТ8101 из наших , тоже устанавливают на теплоотвод.
ОУ в моем варианте задействован сдвоенный , типа ЛМ358, но можно использовать и одиночные операционные усилители, к примеру – TL071/081
Автор; АКА Касьян
Похожие статьи:
xn----7sbgjfsnhxbk7a.xn--p1ai
Эволюция импульсных зарядных устройств для автомобильного аккумулятора на основе AT/ATX.
РадиоКот >Схемы >Питание >Зарядные устройства >Эволюция импульсных зарядных устройств для автомобильного аккумулятора на основе AT/ATX.
В инструкциях по эксплуатации к первым отечественным автомобилям было написано, что аккумулятор нельзя эксплуатировать летом (начинать заводить автомобиль и двигаться) при заряде менее 50%, и зимой менее 75%. Проанализируем, почему аккумулятор в некоторых случаях не будет успевать полностью заряжаться. Например, на улице зима, вам нужно за день съездить в 3-4 места, на улице -25, двигатель остывает уже через 15 мин, а перерывы межу поездками 1-3 часа. Уже темно и вы пользуетесь фарами, а также подогревом сиденья и стекол. В результате все это дело потребляет не менее 400- 500 ватт. Генератор дает ватт 800 и у вас остается ватт 300 (в теории) на зарядку аккумулятора. 300 ватт при 14 В в бортовой сети автомобиля это примерно 20 А. Так вот полностью разряженный аккумулятор с емкостью, например, в 52 Ач даже в теории полностью может зарядиться не быстрее чем за 3,5 часа (70 Ач химической емкости 3,5 часа * 20 А). А реально ток заряда никогда не достигнет значения 20 А, в первые минуты зарядка будет происходить током 10-15А, а далее 3-5А. В результате аккумулятор не успевает зарядиться по пути до ближайшего места стоянки. Конечно, он не полностью разряжен. Давайте посчитаем, насколько он разряжается стартером в зимнее время. При температуре -25 общее время работы стартера составит от 30 сек до 5 мин, например ваш стартер в общей сложности проработал 3 мин в день. Стартер потребляет при такой температуре двигателя в среднем 250А (при пуске может и 900А), при этом за 3 мин расходуется 360 часа * 250А = 12,5 Ач. Это много или мало? Как отмечалось выше, у аккумулятора есть химическая емкость и полезная. Химическая - это та, что запасается в химической реакции, а полезная, та, что расходуется на нагрузку. Естественно, что часть энергии при разряде в виде тепла теряется на самом аккумуляторе и полезная емкость зависит от нагрузки и температуры. Например, разряжаете аккумулятор в течении 10 часов при +25 градусах - его емкость становится 52 Ач (а химическая около 70), если разряжаете за час в тепле - его емкость падает до 35 Ач, остальные 35, от химической, идут на нагрев самого аккумулятора. Если же разряд идет при -25, то сопротивление электролита возрастает, и на самом аккумуляторе тепла теряется еще больше. Реальная емкость на морозе может составить 60% от номинальной, т.е при стартерном режиме 35*0,6= 21 Ач. Так много ли потраченных 12,5 Ач для работы стартера за день? В этой ситуации самым не приятным является то, что химическая емкость не меняется. И для того чтобы зарядить аккумулятор надо потратить в любой ситуации 70 Ач. Покрутили 3 минуты стартер, потратили 12.5 Ач (60 % емкости), вернуть придется 40 Ач. Если же вы не ездите по 4 часа до гаража, не стоите с работающем двигателем в морозы во многочасовых пробках, то ваш генератор не в состоянии обеспечить полный заряд аккумулятора, поэтому его и необходимо периодически дозаряжать.
Конечное напряжение заряда при температуре 20 градусов Цельсия равно 2.25-2.3 вольта на элемент батареи. Для батареи с номинальным напряжением 12 В (6 элементов) конечное напряжение заряда равно 13.5-13.8 В. Если батарея эксплуатируется при других температурах, то для увеличения ресурса батарей рекомендуется уменьшать конечное напряжение заряда до 2.2-2.25 В/эл при температуре 40 градусов и увеличивать напряжение до 2.35-2.4 В при температуре 0 градусов. Применение такой температурной компенсации зарядного напряжения позволяет увеличить ресурс батареи при 40 градусах Цельсия на 15 %. Но чтобы аккумулятор заряжался нужно выходное напряжение зарядного поднять хотя бы на один вольт выше максимального напряжения заряженного аккумулятора (напряжение примерно 15,8 вольта). Для полного заряда разряженной батареи рекомендуется проводить заряд в течение 24 часов. Если необходим более быстрый (в течение 8-10 часов) заряд батареи в случае циклического режима эксплуатации, конечное напряжение заряда увеличивают до 2.4-2.48 В/эл (при 20 градусах Цельсия) и обязательно ограничивают время заряда в соответствии с остаточным зарядом батареи перед зарядкой. Следует отметить, что потенциал электрохимической поляризации свинца примерно при 65С падает до нуля, и выше этой температуры аккумулятор не может существовать, т.е. его невозможно будет зарядить, так как на "-" будет идти исключительно побочная реакция, при которой будет восстанавливаться только водород, да и сам свинец начнет реагировать с серной кислотой. Подача на аккумулятор при заряде напряжения ЭДС в 2В + потенциал электрохимической поляризации 1,3В (примерно 3, 3В на ячейку) также ведет к полному смещению процесса к побочным реакциям. При эксплуатации для сведения к минимуму побочного газообразования и скорости коррозии положительных пластин подаваемое напряжения на элемент не следует делать выше 2,4В на ячейку. Если точнее, то максимальное напряжение заряда 2.33 В на банку при +25С. Температурный коэффициент 0,002 Вград. Т.е. зимой при -25 это будет составлять на каждую банку плюс 50град.*0.002 Вград = 0.1 В . Батарею из 6 банок летом надо заряжать напряжением не выше, чем 2,33*6=13,98 В, а зимой (2,33+0,1)*6= 14,58В. При этом, ни какого специального ограничения тока иили времени заряда не требуется. Ток будет ограничиваться естественным образом, за счет сопротивления проводников и переходного сопротивления на клеммах. А жестко заданное напряжение не приведет к закипанию аккумулятора и не создаст условий для повышенной коррозии положительных пластин. Фактически это будет эквивалентно заряду аккумулятора генератором в бортовой сети. И теперь самое важное, на что никогда не акцентируется внимание. Все эти напряжения являются максимальными (пиковыми), и справедливы для зарядных устройств с ограничением максимального напряжения, т.е. стабилизированных источников питания. Многие зарядные устройства не ограничивают напряжение, а регулируют мощность, отдаваемую в батарею. Действующее значение напряжение, которое будет показывать вольтметр может быть и меньше указанных 14 В, но аккумулятор будет кипеть и плохо заряжаться. Потому что часть времени подводимое напряжение будет превышать норму в 14 В, и большая часть подводимой мощности уйдет на электролиз воды и разрушение анода электрода, а оставшуюся часть периода напряжение будет ниже 14 В, ток будет равен 0. Вольтметр на зарядном устройстве может показывать и 11 В, но аккумулятор при этом будет кипеть и едва заряжаться. В нашем зарядном устройстве аккумулятор почти не кипит и хорошо заряжается. Огромный плюс зарядных устройств с ограничением пиковых напряжений - это возможность ставить аккумулятор на заряд не отключая клеммы аккумулятора от бортовой сети. При этом электроника не сбрасывается, крепления клемм не снашиваются, а времени на периодический подзаряд уходит минимум (открыл капот, поставил на заряд минут на 10-15). Зарядка автомобильного аккумулятора при постоянном напряжении: при этом методе, в течение всего времени заряда напряжение зарядного устройства остается постоянным. Зарядный ток убывает в ходе заряда по причине повышения внутреннего сопротивления батареи. В первый момент после включения, сила зарядного тока определяется следующими факторами: выходным напряжением источника питания, уровнем заряженности батареи и числом последовательно включенных батарей, а также температурой электролита батарей. Сила зарядного тока в первоначальный момент заряда может достигать (1,0-1,5)С20. Для исправных, но разряженных автомобильных аккумуляторов такие токи не принесут вредных последствий. Несмотря на большие токи в первоначальный момент зарядного процесса, общая длительность полного заряда аккумуляторных батарей приблизительно соответствует режиму при постоянстве тока. Дело в том, что завершающий этап заряда при постоянстве напряжения происходит при достаточно малой силе тока. Однако, заряд по такой методике в ряде случаев предпочтителен, так как он обеспечивает более быстрое доведение батареи до состояния, позволяющего обеспечить пуск двигателя. Кроме того, сообщаемая на первоначальном этапе заряда энергия тратится преимущественно на основной зарядный процесс, то есть на восстановление активной массы электродов. При этом реакция газообразования в аккумуляторе еще не возможна. Итак, зарядка при постоянстве напряжения позволяет ускорять процесс заряда аккумуляторов при подготовке к использованию.
Различных зарядных устройств на основе блока питания гуляет по просторам интернета немало. Вот решил поведать и я об истории развития своей схемы зарядок. Схема создавалась для того, чтобы наш котомобиль в морозы зимой все же продолжал ездить на авто, а собрать мог каждый желающий, мало-мальски радиокот. Основной упор в схемотехнике зарядных устройств -простота переделки. В наш век "китайтизации" электроники и электронной промышленности зачастую проще, дешевле и доступнее взять готовый AT/ATX блок питания и переделать его под любые свои нужды, нежели купить отдельно силовой трансформатор, диоды на мост, тиристор и прочие детали. Сначала поведаю о самом простом (ну уже проще просто не бывает!!!) и надежном зарядном на основе AT блока питания, без индикатора тока (хотя амперметр никто не мешает поставить).
Ну, вот блоков для переделки вы уже поднасобирали, тогда начнем-с пожалуй:
Подходим поближе и отыскиваем блоки АТ
Эх, наконец-то раздобыли. Разбираем и смотрим на плату. Для нашей схемы берем самого распространенного китайца, собранного на TL494. Его моем, чистим, сушим и смазываем кулер.
Надо сказать небольшое отступление. О качестве комплектующих для АТ и АТХ блоков. Хочу сказать о важном элементе схемы - фильтрующий конденсатор 310 вольт в первичной цепи. От него зависит не только такой параметр как пульсации выходного напряжения с частотой сети под большой нагрузкой, но и, что очень важно - нагрев самих выходных ключей. Если емкости не хватает, то им приходится работать до 35% своего времени на большей ширине импульса, чем при нормальной емкости, так как среднее средневыпрямленное напряжение уже не 310 вольт, а 250 - 260 вольт напряжение, за счет пульсаций. Контроллеру приходится отрабатывать такие провалы, увеличивая ширину и время открытого состояния транзистора. Следовательно, им приходится работать на большем токе, чем при достаточной емкости. Больше ток - больше нагрев - меньше кпд. (Он и так небольшой 60 - 75% в зависимости от блока). Проведя некоторые измерения более древних и очень старых АТ блоков питания и более новых АТХ выяснилось - китайцы совсем совесть потеряли. Если раньше ставили конденсаторы - как на нем написано,
так оно и есть. То теперь 50% допуск всегда в минус. Перебрал сотни блоков: Написано 470МКФ, выпаиваешь замеряешь - 300 -330МКФ, даже новый конденсатор - та же история.
Ну, да и ладно, пусть пишут что хотят: Ну, а нам необходимо заменить в АТ блоке, на основе которого мы будем строить зарядку 200МКФ на эти самые 330МКФ, или еще лучше 470МКФ (настоящих 470). Транзисторам легче будет.
С дросселями та же история. АТ дроссель:
АТХ дроссель:
Не домотаны, и кольцо меньше... Следствием уменьшения индуктивности дросселя групповой стабилизации будет акустический свист на малых токах (1-2 ампера). Индуктивность этого дросселя рассчитывается, исходя из режима непрерывности тока через него при минимальных нагрузках. При включении блока, он сразу выходит на мощность не менее 150Вт (зависит от компьютера). Через дроссель протекают определённые токи, не менее какой то величины. Дроссель можно рассчитать на это минимальное значение тока, но тогда, при включении без нагрузки, ток через дроссель станет прерывистым, что повлечёт за собой некоторые неприятности... Схема ШИМ регулирования рассчитана для случая непрерывности тока, по этому, при прерывистом токе, регулирование будет сбиваться, дроссель будет петь, напряжения на выходах будут прыгать, вызывая дополнительные токи перезарядки электролитических конденсаторов... Конечно, в данном случае нам на помощь придет цепь RC коррекции обратной связи (некоторые расчеты ниже), но притуплять скорость реакции на изменение напряжения бесконечно нельзя, В какой-то момент TL494 при КЗ просто не успеет снизить ширину импульса и транзисторы выйдут из строя. Этот процесс достаточно быстрый. Поэтому с этим нужно быть осторожнее. Ну ладно, это было лирическое отступление. Продолжим с зарядным устройством.
Схема с мягкой характеристикой зарядного тока.
Плата стандартного АТ блока. Смотрим на схему, что надо выпаять (а выпаять надо много-много лишнего), а что запаять, чтобы получить самую простую зарядку для аккума. Схема взята стандартная, стандартного блока АТ и номиналы уже установленных элементов могут существенно отличаться от ваших. Менять их на указанные на схеме НЕ НАДО! Выпаиваем только ставшие ненужными защиты от перенапряжения, канал 5 вольт, канал -12 вольт. В общем, согласно схеме, оставляем следующее.
В итоге чтобы получить полноценную, регулируемую зарядку на 10 ампер и 15,8в с управляемым от тока нагрузки вентилятором, надо добавить всего восемь деталек!!! А именно: заменить два электролита, добавить шунт очень приближенного сопротивления 0,01ома -0,08 ома (например, три сантиметра шунта с китайского мультика - работает отлично). Фото исходного шунта (Авторский донор снят с советской Цэшки):
Резистор на 120ом, на 3,9к, и примерно 18к, переменный резистор на 10к, конденсатор на 10 нано и перевернуть обмотку на дросселе по каналу -5 вольта для вентилятора. Только не забудьте, что вентилятор теперь подключать надо так: красный на корпус, а черный на -5:.-12в. Шунт припаиваем в разрыв косички с силового трансформатора. Когда будете настраивать резистор на 3,9к то его сопротивление подберите по току заряда 10 ампер на реальном аккумуляторе. Вы не поверите - это всё! Это просто небывалая простота переделки практически уже металлолома во вполне достойную вещь! Если диоды по каналу +12в у Вас изначально стояли FR302, то надо заменить на более мощные, например выпаять из более современного ATX блока питания. Причем короткого замыкания он не боится - входит в ограничение тока. А вот переполюсовка подключения к аккумулятору приведет к большому ба-баху! Про "НОУ-ХАУ", уникальную защиту от перегрузки и короткого замыкания, в конце статьи. Цветными кружочками и линиями обозначены добавленные дополнительные элементы.
Настройка: Все включения до полной настройки проводить включая в сеть только последовательно с лампочкой накаливания 60 ватт. Проверяем монтаж.
Настройка канала напряжения. Подключаем крокодилами мультиметр в режиме измерения напряжении на диапазоне до 200вольт. Включаем в сеть. Напряжение на выходе должно быть в пределах 16 вольт плюс/минус 4 вольта. Если что-то около 5 вольт, значит забыли заменить резистор в цепи контроля напряжения (1 вывод TL494) на 18к. Если около 23-25в, и постепенно без нагрузки нагреваются выходные ключи, то значит в цепи контроля напряжения (1 вывод TL494) обрыв или сопротивление 18к слишком большое, и блок вышел на полную ширину импульса и все равно не может набрать напряжение, для включения обратной связи. Настраиваем подбором этого резистора на напряжение примерно 15,8 - 16,2 вольта. Если вы выставите 14,4 в то акум через примерно 1 час перестанет у вас заряжаться вообще (проверено многократно на разных аккумуляторах).
Настройка канала тока. Резистор включенный последовательно с регулятором тока временно меняем на подстроечник 22к выставляем его в положение минимального сопротивления. Подключаем крокодилами мультиметр в режиме измерения тока на диапазоне 10 ампер. Включаем в сеть блок через лампочку. Если лампочка вспыхнула и продолжает ярко светиться, значит что-то напутали, проверяем монтаж. Если амперметр показывает ток в пределах от 1 до 4 ампер то все нормально. Выставляем переменный резистор в режим максимального сопротивления, а подстроечным резистором настраиваем ток 15 -16 ампер. Иногда лампочка не дает так настроить, поэтому настройте примерно такой ток. Теперь подключив на выход разряженный аккумулятор и амперметр последовательно, убираем лампочку и включаем в сеть. Подстроечным резистором подстраиваем более точно ток, но уже 10 ампер. Затем подстроечник выпаиваем, меряем и впаиваем постоянный резистор такого же сопротивления. Вентилятор охлаждения должен вращаться с оборотами пропорционально току. Если на максимальном токе или коротком обороты слишком велики (напряжение выше 20 вольт), то необходимо отмотать витков 10 с обмотки минус 5 вольт канала питания вентилятора Напряжение на вентиляторе при подобранных витках должно быть от 6 вольт до 17 вольт. Все, на этом настройка закончена.
В итоге на выходе сборочного стола получаем такое зарядное устройство. И даже с корпусом практически никаких слесарных работ не нужно. Выходные/входные провода выведены сзади через пластмассовые разъемы. Таких зарядных в свое время было сделано десятки, и все работают до сих пор :-).
Далее приспособим сюда индикатор тока на светодиодах или на люминесцентном индикаторе, кому, как нравится. В итоге чтобы получить на выходе такое симпатичное зарядное устройство, надо всего совсем немного доработать нашу схему. На люминесцентном индикаторе:
На светодиодах:
И корпус без покраски, индикатор на КТ315И.
Если всё устраивает, то тогда продолжаю мурлыкать по теме. Для измерения тока с более менее сносной точностью, нужно собрать усилитель напряжения с шунта на LM358 и сам индикатор на двух LM324 или на КТ315-х и всё :-). Приведу схему отдельно усилителя, с простой платой, и отдельно самого индикатора. Крепить внутри лучше и проще. Индикаторов два варианта.
Схема усилителя. Диод D1, резистор R3, конденсатор С3 интегрирующая цепь, так как на входе пульсирующее напряжение отрицательной полярности, а нам надо на выходе получить постоянное напряжение пропорциональное току. Настройка: обязательно проверить 12 вольт, часто попадаются бракованные КРЕН-ки, затем резистором R2 калибруют показания индикатора по мультиметру. Резистором регулировки тока выставляете максимальный ток и резистором настраиваете, чтобы только-только зажегся, последний светодиод. Конденсатор С3 работает как интегратор и задает плавность спадания показаний индикатора.
Фото собранных плат усилителей напряжения с шунта (подстроечные сопротивления еще не запаяны).
Схема индикатора на КТ 315. Конечно, "прошлый век" и все такое, скажите Вы, но, а если их в наличии 3 литровая банка. Куда прикажите девать? Выбросить? А SMD-шные транзисторы надо идти на базар и купить, а места в корпусе все равно много. Сверлить отверстия под 315 тоже не надо. Но все же на ваш выбор, схема не критична к выбору транзисторов, хоть МП10 запаяйте, все равно будет работать.
Количество транзисторов и светодиодов можно уменьшить, например до 6 шт., но когда много, то красивше. Фото собранной линейки, пока еще без впаянных светодиодов.
И более ранняя разводка
Эмитерный повторитель можно и не запаивать, а включить напрямую, работает и без него, только спадают показания быстро, а не плавно по одному светодиоду. Иногда на некоторых экземплярах требовалось включать прямо включенный диод, типа КД522, между выходом усилителя и линейкой. Это было необходимо, когда при нулевом токе светились один - два первых светодиода. Налаживание линейки. Правильно собранный без ошибок индикатор работает сразу. Подключаем на вход переменный резистор - бегунок ко входу, правый конец резистора на +, левый на -. Подаем питание, вращаем резистор и смотрим на светодиоды, должны поочередно вспыхивать и гаснуть. Данный индикатор обладает существенной нелинейностью показаний (сначала завал и посередине бывают горбы), но для зарядного вполне подойдет. Просто при настройке значение каждого светодиода отмаркируете.
В схеме блока на плате надо добавить источник 6...8в для светодиодной линейки. Для люминесцентного индикатора добавлять этот источник не надо.
Фото собранной зарядки по вышеприведенным схемам, но на блоке ATX (разницы с АТ особой нет, отличие что питание TL494 питается от дежурки):
Фото крепления платы усилителя. Припаивается в основную плату выводами: корпус и +22в.
Далее приведу схему индикатора на операционных усилителях. В качестве самого индикатора лучше использовать люминесцентный индикатор (схема проще). Если использовать светодиоды, то надо будет добавить еще 8 резисторов по 2к и подключать катодами на корпус. Принцип работы прост. Схема в настройке не нуждается, кроме подбора резистора в цепи накала.
В данной схеме используется два счетверенных усилителя, для формирования восемь уровней индикации. Операционные усилители, используемые в этой схеме - LM324 (Или LM393 если используете светодиоды. Тогда подключаем их аноды на +, а катоды каждый на свой выход). Это довольно распространенная ИМС и найти ее не составит труда. Резисторы R2:.R10 образуют делитель, задающий пороги срабатывания каждого усилителя. Усилители работают в режиме компараторов.
Фото собранного индикатора тока на люминесцентный индикатор
Крепится к передней стенке с помощью термоклея пистолетом или паяльником.
Вышеприведенная схема имеет мягкую характеристику зарядного тока. Ток снижается плавно на протяжении всего времени заряда (Как в автомобиле).
Теперь рассмотрим схему с жесткой характеристикой зарядного тока.
Здесь ток снижается более круто и только к концу заряда. На протяжении основного времени ток стабильный. Здесь нам потребуется уже АТХ блок питания. Нововведение коснулось и защиты от переполюсовки и короткого замыкания. В данном зарядном шунт установлен по минусовой шине, поэтому необходимо разрезать соединение платы с корпусом блока. Если этого не сделать то при случайном касании плюсовым проводом металлического корпуса блок питания придется ремонтировать (менять джентльменский комплект - предохранитель, мост, пара MJE13007, резисторы 10 ом базовые :-)). Схема содержит усилитель напряжения с шунта, компаратор с обратной связью на конденсаторе ( о конденсаторе и его расчетах ниже) для более плавной работы и для устранения перерегулирования и любая из рассмотренных выше линеек индикаторов, но предпочтительней на LM324. В данном случае управление микросхемой TL494 осуществляем через вывод 4, как имеющий самое маленькое усиление и следовательно саму малую реакцию на изменение напряжения на его входе, а не 3, 1,16. При управлении через 4 вывод вся схема зарядного работает устойчиво, отсутствуют возбуждения, перерегулирования, нет нагрева выходных транзисторов.
Теперь немного теории. Для устойчивой работы замкнутых обратными связями преобразователей, необходимо, чтобы коэффициент усиления разомкнутого контура стал меньше единицы до того, как фазовый угол достигнет значения -180 гр. Кроме того, в области среза должен быть сформирован наклон ЛАХ (логарифмическая амплитудная характеристика) разомкнутой системы -20дБ/Дек, а в области низких частот коэффициент усиления должен быть достаточно большим для того, чтобы снизить погрешность при измерениях входного напряжения и тока нагрузки. Т.е. мы считаем частоту индуктора выходной емкости по формуле для LC. Потом для этой же частоты по формуле RC считаем сопротивление и емкость в цепи обратной связи. А если у нас выходной конденсатор низкого сопротивления, то по этой же формуле еще раз считаем следующий конденсатор и пару для него берем сопротивление из высокого плеча делителя выходного напряжения.
Правда там не сказано, от чего отталкиваться, выбирая соотношение для величины емкости и сопротивления. Т.е. знаем частоту, знаем формулу, но два неизвестных. А вот в этом
есть эмпирическая формула для подбора величины сопротивления в цепи обратной связи ОУ. R = 5800 * Cвых * Fперекрест * Vвых, где Fперекрест - численно принимается 1/10 от частоты работы преобразователя. Правда почему-то в 2й картинке они емкость считают отталкиваясь от 1/3 частоты LC, что вносит несуразицу, т.к. в 1й картинке считалось ровно по частоте LC. Но хотя бы примерный порядок для подбора величин эти данные дают.
Защита от переполюсовки и КЗ выполнена на двух транзисторах и светодиоде. Схема:
Настройка заключается в подборе R3 в зависимости от вашего шунта, и подборе R5 для ограничения максимального выходного тока на уровне 10 ампер. Доработки линеек индикаторов состоят только в установке и подстройке подстроечного сопротивления для диапазона отображения тока 3 - 10 ампер. Настройка канала тока. Резистор R5 временно меняем на подстроечник 10к выставляем его в положение максимального сопротивления. Подключаем мультиметр в режиме измерения тока на диапазоне 10 ампер. Включаем в сеть блок через лампочку. Если лампочка вспыхнула и продолжает ярко светиться, значит что-то напутали, проверяем монтаж. Если амперметр показывает ток в пределах от 0,2 до 1 ампер то все нормально. Выставляем переменный резистор R6 в режим максимального напряжения с бегунка, а подстроечным резистором настраиваем ток 10 ампер. Затем выпаиваем подстроечник, замеряем и впаиваем постоянный резистор такого же сопротивления. Работа и настройка канала напряжения аналогично первой схеме.
Доработки основной платы АТХ блока для схемы управления на LM358.
Доработки схемы линеек:
В схеме с операционными усилителями ставим Р1 и подбираем его или подбираем R2, а Р1 не добавляем, а подключаем напрямую.
Подробней остановимся на защите от переполюсовки и от короткого замыкания. Схема своего рода "НОУ-ХАУ", по простоте и надежности. Плюс в том, что не нужно использовать мощное реле, или тиристор, на котором падение напряжения около двух вольт. Схема как самостоятельное устройство может быть встроена в любое зарядное устройство и блок питания. Выход из режима защиты автоматический, как только устранится короткое замыкание или преполюсовка. При срабатывании светится светодиод "ошибка подключения".
Описание работы: При нормальном режиме напряжение через светодиод и резистор R9 отпирает VT1 и все напряжение со входа поступает на выход. При коротком замыкании или переполюсовке ток импульсно резко возрастает, падение напряжения на полевике и шунте резко увеличивается, что приводит к открыванию VT2, который в свою очередь шунтирует затвор исток. Добавочное отрицательное напряжение по отношению к истоку (падение на шунте) прикрывает VT1. Далее происходит лавинный процесс закрытия VT1. Светодиод засвечивается через открытый VT2. Схема может находиться в данном состоянии сколь угодно долго, до устранения замыкания.
Для зарядки дополнительно и мотоциклетных аккумуляторов можно добавить переключатель подключающий дополнительный подобранный резистор в цепи вывода 1 TL494. Конструкция будет универсальной если поставите переменный резистор. На выходе можно регулировать напряжение до 20 вольт.
Если поставить мост в выходном канале 12в, то тогда можно регулировать напряжение до 35 вольт. Дальнейшие доработки ограничены только фантазией.
Дабы не быть голословным, привожу фотки работы зарядного
Фото работы зарядного устройства. Ток зарядки 10 ампер.
Также разработаны и другие схемные решения. Продолжение следует...
Файлы:
Печатные платы в формате SL 5.0.
Вопросы, как обычно, складываем тут.
Как вам эта статья? | Заработало ли это устройство у вас? |
www.radiokot.ru
ЗУ на 12 В с регулируемым зарядным током

Как всегда неожиданно пришли холода и снова пришло понимание, что нужно купить для аккумулятора машины зарядный выпрямитель. Все знают, что мороз не нравится батареям, а потому подзаряжать их от сети 220 В приходится чаще. Решено было не инвестировать в дешевые китайские автозарядки из супермаркетов, а попытаться что-то сделать самому.
Зарядное устройство должно заряжать / перезаряжать аккумулятор в автомобиле и на мотоцикле. Предполагалось также, что регулировка тока зарядки будет относительно простой в исполнении, потому что не каждый понимает настройки всяких там HTRC T240. Чтобы плавно настраивать ток, можно использовать эту очень простую схему:
Здесь используются обычные резисторы 0.125 Вт, но решено было поставить 0.5 Вт, из-за высокого напряжения. Также добавлен в схему также второй предохранитель на вторичной стороне трансформатора (10 A) на всякий случай, конденсатор фильтра 2200 мкФ 25 В и вольтметр со шкалой до 20 вольт. Диодный мост KBPC2510. Остальное, как на принципиальной схеме.
Выбор трансформатора для зарядного
В гараже нашелся какой-то старый советский трансформатор 15 В 120 VA и решено было использовать именно его в качестве основы для сборки выпрямителя.
В целом выпрямитель работает очень хорошо. После подключения лампы h5 55/60w напряжение падает примерно до 12 В, и это тоже неплохо. Это первый вариант зарядного, во втором (сделанном на заказ) использовался тороидальный трансформатор 100W 11V 9A (предназначенный для питания галогенок), и после выпрямителя там получалось более 15 В на конденсаторе. Теоретически достаточно подключить к цепи вторичного питания (после диодов моста) конденсатор около 100 мкФ / 25 В и измерить напряжение на нем, если оно достигнет 16-17 В все нормально и вы можете безопасно построить на этом трансформаторе ЗУ к АКБ.
Важно: трансформатор должен давать номинальное напряжение 12 В при нагрузке, а не 12 В на холостом ходу — это напряжение слишком низкое. Если мы используем двухтактный выпрямитель — напряжение будет около 16 В. Использование диодов Шоттки даст еще больше прирост — до 17 В. Напряжение сетки также важно — если намного меньше 220 В — не будем иметь достаточного напряжения.
Если при нагрузке напряжение падает до 12-13 В, батарея не будет полностью заряжена. Для выпрямителя требуемое напряжение составляет около 16 В! Хотя правильное зарядное напряжение — 13,8 В — 14,4 В, рекомендуется с учётом просадки на пару вольт подавать выше.
Естественно при управлении симистором в первичной обмотке присутствует постоянная составляющая тока, приводящая к насыщению сердечника и многим другим нежелательным явлениям, таким как гудение трансформатора. Большинство трансформаторов, питающихся таким образом, имеют более-менее проявляющиеся подобные симптомы, но лишь немногие не подходят вообще. В конце концов их можно устранить или заметно ослабить (силовые резисторы). Или вообще изменить тип контроля зарядного тока на такой.
2shemi.ru
Зарядка аккумулятора от… аккумулятора. — Сообщество «Сделай Сам» на DRIVE2
Ситуация такая. В гаражах отключили электроэнергию на неопределённый срок из-за неурегулированности некоторых вопросов, скажем так, взаимоотношений собственников боксов с энергоснабжающей организацией.
В гараже стоит новый автомобиль, который используется только весной и летом. Специфичный автомобиль, тоже скажем так, летний. Он стоит под охраной системы Цезарь-сателит, которая постоянно связана со своим диспетчерским пунктом. Естественно, на этот процесс затрачивается электроэнергия аккумулятора (АКБ) авто, и естественно АКБ этот (батарея AGM) надо периодически заряжать, хотя бы раз в 2 -3 недели. А электричества нет. Что делать?
Есть аккумулятор Delta 12в ;100а/ч, который применяется в системах бесперебойного питания и допускает глубокий разряд. Вот он и будет использоваться в паре с китайским инвертором 12/220 в, 300 вт. А уж к инвертору будет подключаться зарядное устройство.
Но… Зарядка занимает иногда довольно длительное время. АКБ-донор хоть и не боится глубоких разрядов, но разрядкой в "0" убить можно и его. Не сидеть же рядом всю ночь и не следить же за процессом, чтобы вовремя отключить нагрузку. Следовательно нужно колхозить устройство, которое отключит нагрузку за меня при снижении напряжения батареи-донора до уровня остаточного заряда 10%. Для AGM батарей это 12 вольт.
В интернете нашел схему на 555 таймере, регулируемом стабилитроне TL431 (выдает опорное напряжение таймеру) и полевом транзисторе IRFZ44N, вот она:

Полный размер
Добавил только светодиодную индикацию наличия напряжения — красный светодиод показывает, что устройство включено, а зеленый, — что на нагрузку (инвертор с зарядным устройством) поступает напряжение. Величина напряжения АКБ-донора индицируется цифровым китайским вольтметром. Это удобно. В том числе удобно и при регулировке уставки срабатывания на отключение, видно, при каком напряжении это происходит.
Только перед монтажом вольтметр нужно откалибровать с помощью эталонного вольтметра ( например цифрового тестера). У китайских приборов заводская юстировка не точная. Для этого на плате вольтметра есть подстроечный резистор.
Сама схема устройства несложная и хорошо повторяемая. Регулировка напряжения отключения нагрузки (закрытия транзистора IRFZ44N) осуществляется подстроечником R5. Желательно, чтобы он был многооборотный. Для этого нужно подать на вход напряжение болшее, чем требуемый порог отключения, и затем регулировкой резистра R5 добиться четкого выключения нагрузки на заданном пороге. У меня это 12 в.
Вот устройство в работе:

Теперь я привожу на машине в гараж АКБ-донор. Подключаю схему и иду по своим делам. Устройство не даст "высосать" АКБ-донор до донышка. После зарядки аккумулятора на летнем авто АКБ-донор увожу в другой гараж и заряжаю, как обычно.
P.S. Да, забыл. При отключении нагрузки устройством по снижению напряжения ниже порогового уровня включить процесс заново можно только после полного отключения питания устройства.
www.drive2.ru