Лазерная лампа освещения


Лазерное освещение — луч, указывающий дорогу в будущее / Статьи и обзоры / Элек.ру

Применение лазеров охватывает значительную часть деятельности человека. Лазер является источником света с уникальными свойствами, тем не менее он долго не применялся для освещения. И вот, наконец, удалось создать образец системы освещения на основе лазера, которая пригодна для массового производства. О том, как работает лазерное освещение, его преимуществах и недостатках, пойдет речь в настоящей статье.

На выставке потребительской электроники CES 2019, прошедшей в январе 2019 года в Лас-Вегасе, была представлена автомобильная фара на основе лазера. Такие продукты в виде опытных продуктов демонстрировались и ранее, например, в 2014 году. Но на этот раз интрига была, во-первых, в том, что наконец-таки был представлен продукт, готовый к серийному производству, во-вторых, он имел принципиально новый функционал (дальность действия до 1 км, поддержка технологии передачи данных световым лучом Li-Fi) и, в-третьих, в проекте принял участие нобелевский лауреат Сюдзи Накамура, один из создателей светодиодов белого свечения.

Возможности лазера

Свойства лазерного луча действительно удивительны. Вы можете сфокусировать его, получив на большом расстоянии световое пятно малого размера. Лазером можно резать металлические листы. Наконец, лазеры применяются в медицине, как для проведения операций, так и для безоперационного лечения.

Чтобы понять, чем обусловлены возможности лазера, сравним его с некоторыми видами источников излучения, применяемых для освещения. Для этого вспомним, что свету свойственен так называемый корпускулярно-волновой дуализм: он одновременно представляет собой как электромагнитную волну, так и поток мельчайших частиц (фотонов).

Излучение лампы накаливания состоит из бесконечно большого числа составляющих с разной длиной волны в широком спектре. Излучение светодиода определенного цвета (не белого) состоит из бесконечно большого числа составляющих в относительно узком спектре. Длину волны, на которой приходится максимум спектральной плотности, принято считать длиной волны излучения светодиода. Газоразрядные источники низкого давления дают спектр, состоящий из одной или нескольких узких полос. Например, натриевые лампы низкого давления дают одну спектральную составляющую с длиной волны 620 нм. Такое свойство называется монохромностью. Однако излучение света происходит спонтанно, в результате фотоны, вылетающие из лампы, имеют разные направления распространения, поляризацию и фазу.

Лазерное излучение обладает такими свойствами, как монохромность, определенная поляризация и, самое главное — когерентность. Каждый фотон, вылетающий из лазера, имеет точно такие же свойства, как и предыдущий, а именно, те же направление движения, поляризацию и фазу. В итоге происходит усиление света по сравнению со спонтанным излучением.

Лазерное излучение может быть точно сфокусировано. Оптические свойства материала линзы зависят от длины волны преломляемого света. Поэтому если вы фокусируете солнечный свет или свет лампы накаливания, то получите не одну точку, а пятно очень малых, но все же конечных размеров.

Когда лазерное излучение проходит через линзу, то зависимость коэффициента преломления от длины волны никак не сказывается, потому что весь спектр состоит из одной составляющей с заданной длиной волны. Излучение фокусируется в одной точке бесконечно малых размеров. Благодаря этому лазерным излучением можно резать металл, также удается сфокусировать луч лазера на большом расстоянии.

Лазер обладает высокой энергоэффективностью, так как по своему принципу работы является резонансным устройством (в отличие от светодиодов и других источников света). Для того, чтобы понять, что это может дать для светотехники, проведем аналогии со звучанием старых концертных залов, построенных еще до появления звукоусилительной аппаратуры. В них звук усиливается за счет системы резонаторов, настроенных на частоту человеческого голоса. В итоге звук исполнителя на сцене хорошо слышен по всему залу, хотя дополнительная энергия при этом не расходуется. Точно так же за счет резонансных явлений полупроводниковый лазер более эффективен, чем светодиод и другие источники света.

Но монохроматичность лазера с точки зрения освещения является большим недостатком. Для систем освещения нужен белый свет, то есть широкополосное излучение. Таким образом, решение задачи создания системы лазерного освещения сводится к сочетанию таких, казалось бы, несочетаемых вещей, как монохромность и коге-рентность, с одной стороны, и широкополосность, с другой.

Как создавался лазер.
Предшественником лазера был мазер — прибор, работающий на схожем принципе, но дающий излучение не в световом, а в микроволновом диапазоне. Мазер был изобретен в середине 50-х годов советскими учеными Николаем Басовым и Александром Прохоровым, а также, независимо от них, американцем Чарлзам Таунсом. В 1964 году все трое были удостоены за изобретение мазера Нобелевской премии по физике.
Первый лазер, дающий излучение в видимом диапазоне, создал в 1960 году американский физик Теодор Майман.
В настоящее время наибольшее распространение получили полупроводниковые лазеры, изобретенные в 1963 году советским физиком Жоресом Алферовым и, независимо от него, американским физиком немецкого происхождения Гербертом Кремером. Но массовое производство таких лазеров стало возможным только в конце 70-х годов. За исследования в области полупроводниковых гетероструктур, приведшие, в частности, к созданию полупроводниковых лазеров, Жорес Алферов и Герберт Кремер были удостоены в 2000 году Нобелевской премии по физике.

Спектр излучения (слева направо):
люминесцентной лампы, светодиода на основе фиолетового чипа и обычного светодиода

От SORAA — к лазерному освещению

Основой для классического белого светодиода является кристалл, излучающий синий цвет с длиной волны 450 нм. На этот кристалл наносится люминофор, дающий зеленые и красные составляющие спектра в результате возбуждения его синим свечением. В результате суммирования излучения кристалла и люминофора получается белое свечение. Недостатком такого подхода является наличие явно выраженного всплеска в синей области спектра и «провала» в синезеленой части. С развитием технологии эти проблемы постепенно решались, тем не менее радикально улучшить цветопередачу светодиодов удалось, перейдя на принципиально новую технологию, развитие которой проложило дорогу лазерным осветительным системам.

Сюдзи Накамура основал компанию SORAA для развития технологии так называемых фиолетовых светодиодов. Основой таких светодиодов является чип, излучающий свет с длиной волны около 400 нм, находящийся на границе видимого диапазона и ультрафиолетового излучения. Чип покрывается трехполосным люминофором, который, будучи возбужденным излучением с длиной волны 400 нм, дает излучение синего, зеленого и красного цвета. Суммируясь, эти составляющие в итоге дают белое свечение. Принципиальным моментом является то, что люминофор практически полностью поглощает излучение чипа, то есть составляющая с длиной волны 400 нм в правильно сконструированном фиолетовом светодиоде не должна выходить за пределы устройства. Аналогичные светодиоды выпускают сейчас несколько фирм, в качестве примера можно привести линейку SunLike от Seoul Semiconductor.

Трехполосный люминофор можно возбуждать не светодиодом, а полупроводниковым лазером с длиной волны 400 нм. При этом мы также получим белое свечение, не содержащее в своем спектре исходного лазерного излучения. Именно на таком принципе и основаны лазерные системы освещения. Неудивительно, что компания SLD Laser, представившая произведшую на CES 2019 фурор автомобильную фару, стала ответвлением от SORAA, а ее техническим директором является все тот же Сюдзи Накамура.

Испытание предсерийного образца лазерной фары от SLD Laser

Проблема создания светодиодных фар

Светодиодные фары ближнего света используются сейчас в автомобилях повсеместно. А вот фары дальнего света на галогенных лампах по-прежнему превосходят по основным характеристикам светодиодные. Проблема заключается в том, что для таких фар источник света должен иметь как можно меньшие размеры. Но размеры светодиода сдерживаются ограничениями по плотности тока через него. Плотность тока равна отношению силы тока, протекающего через кристалл, к площади его сечения. То есть чем больше требуется световой поток, тем больший ток должен протекать через светодиод. И тем большими размерами должен обладать кристалл.
На современном уровне развития полупроводниковой светотехники обеспечить нужный световой поток от одного кристалла невозможно. Поэтому в фарах применяют светодиодные матрицы, обладающие значительными световыми габаритами. Кроме того, есть проблемы с отведением тепла от светодиодов, сосредоточенных в одном месте. Решить перечисленные проблемы можно с помощью лазерных систем освещения.

Освещение дороги светодиодными фарами (слева)
и опытным образцом лазерных фар, разработанных BMW

Преимущества лазерных систем для фар

Максимальная плотность тока в полупроводниковом лазере может быть в 1000 раз больше, чем в светодиоде. Благодаря этому можно значительно уменьшить размеры кристалла, что важно для автомобильных фар.

Резонансные явления, о которых упоминалось ранее, обеспечивают более высокий КПД полупроводниковых лазеров относительно светодиодов. То есть увеличивается доля энергии, идущая на полезное излучение, и одновременно уменьшается нагрев кристалла. Но лазеры позволяют принципиально по-новому организовать охлаждение источника света. От одного кристалла можно получить больший световой поток. SLD Laser объявила, что ей удалось получить световой поток 1000 лм от одного SMD лазера для освещения.

Лазер можно разместить отдельно от фары, в том месте автомобиля, где можно обеспечить его наилучшее охлаждение. Излучение лазера подается в фару по световоду и преобразуется в белое свечение непосредственно в фаре при помощи трехполосного люминофора. Внимательный читатель может отметить, что теоретически такую схему построения фары можно реализовать и с применением светодиодов. Но существующие на практике технологические ограничения позволяют реализовать ее только на основе лазера. Именно лучи лазера можно точно сфокусировать, чтобы они полностью вошли в световод. Потери в световоде минимальны только для одной длины волны, при передаче через него даже узкополосного спектра синего светодиода потери значительны, чего не скажешь о лазере, настроенном на «окно прозрачности» световода.

Важное преимущество лазерной осветительной системы — возможность размещения
источника света вне осветительного прибора с передачей излучения по оптоволокну.
Это позволяет обеспечить оптимальный температурный режим источника света

Li-Fi в фарах на лазерах

Широко разрекламированным преимуществом фар на основе лазера является возможность реализации технологии Li-Fi. Эта технология позволяет передавать информацию путем модуляции светового потока на частоте, не заметной глазу. В принципе, Li-Fi можно реализовать на любом полупроводниковом источнике света, для этого подходит и светодиод. Новизна заключается в том, что на полупроводниковом источнике света, а именно, на полупроводниковом лазере создана фара дальнего света, причем с дальностью до 1 км. Ранее технология Li-Fi использовалась для связи в пределах офиса, на расстоянии порядка нескольких метров.

Через Li-Fi автомобиль на дороге может передавать другим участникам дорожного движения, например, информацию о своих параметрах, количестве и составе пассажиров (есть ли дети), цели поездки (может заменить или дополнить классическую «мигалку»). Все это станет особенно актуальным при переходе на беспилотные автомобили.

Фара — лазерная, но спектр — обычный.
Следует отметить, что из автомобильной фары выходит излучение с широким спектром, близким к спектру солнечного света. Это — не лазерное излучение! Лазер используется только для возбуждения люминофора. Возможность фокусировки светового пучка на большие расстояния обусловлена не когерентностью излучения, а исключительно малым размером источника света. Но именно такой размер обеспечивается благодаря уникальным свойствам лазера.

Недостатки систем освещения на основе лазера

Как и у любой технической новинки, у систем освещения на основе лазера высокая стоимость и отсутствие широкого опыта применения. Если речь идет об автомобильных фарах, то пока правовое регулирование их отсутствует. Разработчики представленной на CES 2019 фары уверяют, что ее применение в США легально уже в силу того, что законодательство страны не запрещает использование лазерных фар.

Более серьезной проблемой являются вопросы безопасности для здоровья. Лазерное излучение обладает свойствами вызывать резонанс в клетках человеческого организма. Это свойство уже давно используется в медицине. Но одно дело, когда лазерное излучение подается с определенной длиной волны, в строго определенных дозах под наблюдением врачей. И совсем другое — не-контролируемое лазерное излучение с длиной волны, выбранной не по медицинским, а по иным соображениям.

В том случае, если система освещения на основе лазера сконструирована правильно и только что изготовлена, она безопаснее обычных светодиодов. Излучение лазера практически полностью поглощается люминофором, так что в спектре нет даже пресловутого «синего пика». Но при отступлении от технологии в процессе производства, а также при старении правильно изготовленного источника света способность люминофора поглощать лазерное излучение снижается. Наружу «вырывается» лазерное излучение, которое действительно опасно для окружающих.

По мнению автора статьи, решить эту проблему можно, снабдив каждую осветительную систему на основе лазера датчиком, определяющим выход лазерного излучения наружу. При обнаружении такого явления источник света автоматически отключается и включить его обратно пользователь самостоятельно не может. Но такая защита приведет к удорожанию инновационных систем освещения.

Перспективы использования лазера в освещении

Помимо автомобильных фар дальнего света, использование систем освещения на основе лазера имеет смысл для создания мощных прожекторов с углом распределения света менее 1 градуса. Также осветительные приборы на основе лазеров могут найти применение на высокоточных производствах и в медицине, там, где нужно точно сфокусировать пучок света в определенном месте.

Применение лазерных систем для уличного освещения, а также общего интерьерного освещения пока нецелесообразно из-за дороговизны и нерешенных проблем с безопасностью. Тем не менее перспективно использование лазерных систем освещения в охранных целях (в режиме включения на короткий промежуток времени), что позволит просматривать пространство на большем расстоянии, чем при использовании обычного освещения.

Источник: Алексей Васильев, журнал «Электротехнический рынок»

www.elec.ru

Лазерные диоды или как делают мощные лазерные светильники

Главная страница » Лазерные диоды или как делают мощные лазерные светильники

Несколько десятилетий яркий лазерный свет украшал концерты, спортивные мероприятия и прочие шоу. Между тем за картинкой зрелищ всегда оставались технологические ограничения. Лазерный луч обладал способностями освещать только одну точку за момент времени и никогда в белом свете. Более того, световые узоры, созданные лазерным лучом, изобиловали постоянно меняющимся и несколько жутким феноменом интерференционной картинки. Однако технологии сделали своё дело. Недавние достижения в области полупроводниковых лазеров открыли более широкий спектр применения. Усовершенствованный лазерный диод теперь доступен и для точной подсветки фасадов зданий и для автомобильных фар дальнего света.

СОДЕРЖИМОЕ ПУБЛИКАЦИИ :

Лазерные диоды – суть и практика света

Лазерные диоды следует рассматривать «близкими родственниками» светоизлучающих диодов (LED – Light Emitting Diodes). Конструкция светодиодов содержит диоды или микросхемы, выполненные на основе двух терминальных полупроводниковых элементов.

Этими полупроводниками осуществляется преобразование потока электрической энергии в луч света и цвета определенной длины волны. Гамма цвета, в свою очередь, зависит от применяемого сочетания терминальных полупроводников.

Выпускаются белые светодиоды, где от чипа синего луч направляется на фосфорно-химическую основу. В результате поглощения синего света, прибор начинает излучать желтый свет. Излучение жёлтого люминофора и синего светодиода объединяют и таким образом получают свет, воспринимаемый глазами человека как белый.

Возможности лазерного диода

Лазерные диоды оснащены двумя зеркалами на противоположных концах полупроводника. Одно из зеркал имеет частичную прозрачность, подобно двухстороннему зеркалу.

При низких уровнях мощности, лазерный диод работает аналогично тому, как работает обычный светодиод с очень малой эффективностью отдачи.

ЛАЗЕРНЫЕ

Упрощённая интерпретация структуры инновационного полупроводника: 1 — рассеивающий отражатель; 2 — чип с жёлтым люминофором; 3 — лазерный диод с двойным зеркальным отражением

Однако, как только электрическая мощность достигает порога плотности, равного примерно 4 кВт/см2, полупроводник излучает достаточно света для части длин волн, что отражаются между зеркалами. Эти условия позволяют лазерному диоду излучать значительно больше света, чем это делает обычный светодиод.

Кроме того, отражённый между зеркалами свет, проходит сквозь полупрозрачное зеркало, благодаря чему формируется узкий луч синего. Этот луч далее может быть направлен на люминофор для последующей генерации желтого света.

Стоит отметить интересную деталь: обычные синие светодиоды имеют высокую светоотдачу, регенерируя до 70% электрической мощности, проходящей через приборы при плотности потока 3 Вт/см2.

Это значительно более эффективно, чем в случае с лазерными диодами синего излучения, мощность конверсии которых не превышает 30%, когда плотность электроэнергии составляет не более 10 кВт/см2.

Но светодиоды способны достигать высокой эффективности при низких токовых уровнях. Поэтому эффективная отдача требует значительной массы дорогих полупроводников.

Усиление тока, пропускаемого через светодиоды, повышает яркость излучения. Но увеличение тока резко снижает эффективность светодиодов. Это явление известно как «спад». А вот эффективность лазерных диодов с увеличением тока не изменяется.

Таким образом, при плотности электроэнергии около 5 кВт/см2, светодиоды становятся менее эффективными по сравнению с диодными лазерами. Эта разница производительности увеличивается пропорционально с уровнем мощности.

Эффективность лазерных диодов

Исходящий лазерный луч формирует конус излучения всего лишь в 1º — 2º по сравнению с конусом светового излучения светодиода в 90º.

МОЩНЫЕ ЛД

Форма излучения двух разных типов диодов. Слева обычные светодиоды, справа модификация с лазерным излучением. Разница в характеристике формы луча очевидна

Длина волны лазерного излучения падает в пределах 1 нм по сравнению с несколькими десятками нанометров для светодиодного освещения. Эти различия указывают на особую ценность лазеров для отдельных случаев применения, где светодиоды значительно уступают. Внутри диода лазер можно сфокусировать на крошечной точке люминофора для создания узкого интенсивного луча яркостью, в 20 раз превышающей яркость светодиода.

Новые технологии позволяют генерировать до 500 люменов светового потока из фокусного пятна, размерами всего в несколько сотен микрометров. С помощью лазеров и оптики размером 25 мм, новые технологии позволяют выводить световой луч с конусом около 1º. Эти достижения можно считать революционными. Реально открывается доступ к производству фонарей и автомобильных фар дальнего света, луч которых способен пробивать расстояние до 1 км!

Применение лазеров в автомобилестроении

АВТОМОБИЛЬНЫЕ

Известный производитель авто под маркой «BMW» уже применяет (с 2015 года) лазерные фары в конструкциях автомобилей некоторых моделей.

Сравнение систем света, применяемых на автомобилях BMW: А — светодиодный малой мощности. Дальность 100 м; Б — светодиодный высокой мощности. Дальность 300 м; В — светодиодный высокой мощности с лазерной подсветкой. Дальность 1000 м

Синий лазер, излучаемый с поверхности от 4 до 30 мкм, даёт столько же оптической мощности, сколько дают светодиоды, размещённые на площади 800 мкм.

Чтобы вписаться в максимально допустимый диапазон дальнего света, утверждённый нормами ЕС, компания «BMW» разработала подходящую автомобильную фару.

Автомобильная фара сочетает в конструкции широкоугольный светодиодный люминофор с узко-угольной дальнобойной лазерной подсветкой. Световая масса такой подсветки пробивает расстояние до 600 метров.

Компания «SoraaLaser» использует технологию устройства полуполярного галлий-нитридного лазера поверхностного монтажа для получения белого света. Готовый 7-миллиметровый квадратный модуль содержит:

Отражатель синего лазера служит для временного транспорта перед смешением с жёлтым люминофором.

Технические возможности приспособления лазера

Светильники с лазерным источником, по своей сути должны иметь различные конструктивные вариации с учётом дизайна тех же светодиодных светильников.

ИСТОЧНИКИ

Схема технологическая №1: 1 — люминофорный диск желтого/зелёного; 2 — луч синего лазера; 3 — проекционная линза; 4 — цветовой диск; 5 — призма; 6 — система цифровой обработки света (DLP)

Лазерный диод и люминофор необходимо отделять достаточным пространством для лазерного луча, чтобы сфокусировать и защитить люминофор от перегрева.

В другом варианте люминофор может располагаться рядом или покрываться непосредственно светодиодами. В любом варианте специальное компьютерное программное обеспечение поможет дизайнерам модельной оптики разрабатывать уникальные лазерные светильники.

Существующие ныне продукты лазерного света компании «SoraaLaser» используют для вывода наружу белого светодиодного излучения синие лазеры, излучающие длину волны 450 нанометров, близкую к стандартной величине.

Таким образом, есть все предпосылки, чтобы использовать желтые люминофоры, используемые в светодиодах, чтобы создать белый свет.

Однако синий лазерный луч необходимо рассеять или отразить материалом, подобным матовому стеклу. Это необходимо для правильного смешения с излучением люминофора.

Использование уже опробованных технологий

Лазерное освещение также возможно организовать на базе проверенной временем технологии 405-нанометровых фиолетовых лазеров, которые разрабатывались для применения в конструкциях оптических дисков (Blu-Ray).

ТЕХНОЛОГИИ

Технологическая схема № 2: 1 — сумматор света; 2 — оптическое волокно; 3 — световод; 4 — чип цифровой обработки света; 5 — призма; 6 — проектные линзы; 7 — система против эффекта спекл

Здесь производство белого света требует добавления люминофоров для преобразования фиолетового света в синий свет при длине волны 450-460 нанометров, в дополнение к желтым люминофорам. Это чревато дополнительными энергетическими затратами, но обещает повысить эффективность лазерных диодов.

Люминофорные белые светодиоды преобладают на рынке полупроводниковых приборов освещения из-за их простоты. Совмещением света красного, зеленого, синего светодиодов производится белое свечение.

Другой вариант, с добавленной способностью модулировать цвет, на примере нескольких моделей светодиодных ламп, которые дополнены функционалом изменения цвета и  также присутствуют в продаже.

В принципе, лазерные технологии не исключают совмещения красного, зелёного, синего цветов для получения белого света, но это направление пока что остаётся на стадии научных исследований и разработок.

Безопасность и поиск модульных вариантов

Одной из проблем лазерного варианта c RGB смешением является необходимость контроля отражения лазерного света по соображениям безопасности. Другой проблемой является поиск подходящих источников RGB-лазера.

УНИВЕРСАЛ

При производстве лампы Hue Philips частично используются новые технологии, позволяющие получить белый свет из трёхцветного спектра

Так, компания «Philips» в технологии производства ламп «Hue» использует отдельные светодиоды в качестве источников RGB. Лампы отличаются преобладанием зеленых светодиодов, поскольку эти приборы менее эффективны и дают меньше оптической мощности, чем красные или синие светодиоды.

Разница производительности по убыванию для полупроводниковых лазеров:

Популярные в обществе лазерные указки зелёного свечения генерируют свет опасно яркий, но этот свет исходит от кристаллических лазеров, не от полупроводников. Полупроводниковые же лазеры, излучающие каждую из 3 длин волны, невозможно интегрировать на один и тот же чип.

Одна деталь, всегда остающаяся незримой при работе лазерного светильника — это лазерный луч. Подобно солнцу, луч лазера, направленный напрямую в глаза, грозит сжечь сетчатку.

Поэтому продукты, где используются лазеры (те же приводы дисков Blu-Ray), оснащаются защитой — сконцентрированный лазерный луч закрыт экраном.

Между тем прямое отражение, например, от зеркала, действительно представляет опасность, но рассеянное отражение, к примеру, от покрашенной стены, не представляет никакой опасности. Оптические проектные решения, исключающие трансмиссивные люминофоры, также уменьшают риск.

Монолитная основа и спекл в лазерных светильниках

Спекл (дифракционное пятно) — нежелательный дефект в лазерном освещении. Дефект представляет собой зернистую (пятнистую) структуру, которая проявляется при малейших колебаниях воздуха.

Примерно таким выглядит технологический дефект — эффект спекл (случайная интерференционная картина), от которого необходимо избавляться

Безвредный, но раздражающий зрение дефект, можно предотвратить путём рассеивания лазерного излучения с помощью матового или белого стекла. Получить монолитную основу с размещением трёх цветов достаточно сложно. Тем не менее, исследования в этом направлении дают определённые результаты.

Группе китайских учёных, к примеру, удалось интегрировать в единую основу различные цветные лазерные диоды. При этом не применялись стандартные соединения — галлия, индия, азота, мышьяка.

Как известно, эти соединения используются в полупроводниковых лазерных диодах вместо семейства полупроводников, состоящих из кадмия, цинка, серы и селена. Депонируя различные смеси элементов в тонких слоях, учёные получили монолитный прибор, где объединились разрозненные лазерные диоды.

Так получили синий, зеленый, светло-красный и темно-красный свет для производства белого света. Но китайская технология, опять же, пока что чисто экспериментальная.

Примерно по такой технологической схеме должна выстраиваться монолитная структура источника излучения

Группа английских исследователей применила другой подход к производству белого (цветного) перестраиваемого света лазеров. Инфракрасный свет можно смешать и получить видимый спектр.

Для этого требуется комбинация двух инфракрасных пучков в тонком микроструктурированном материале (титанил фосфат калия) с высоким нелинейным эффектом.

Материал титанил фосфат калия объединяет частоты инфракрасных пучков. Смешивание приводит к формированию лазерного выхода красной, зеленой, синей волн.

Применение лазерных светильников в архитектуре

Высокая интенсивность лазеров удачно работает в архитектурной прожекторной подсветке, где требуются узкие лучи света. Лазеры с малой оптикой обеспечивают подсвечивание точных областей при помощи широкоугольного, сверхкороткого потока.

Лазерное возбуждение люминофоров может создавать очень высокий контраст между светлыми и тёмными областями. При этом градиенты света более чем в 10 раз резче, чем в случае с обычными светодиодными источниками.

Точная подсветка зданий лазерным светом позволяет создавать красочные картины экстерьера. Однако это всего лишь малая часть возможностей применения

Так, лазерный источник света способен равномерно освещать экстерьер пятиэтажного здания с использованием одного светильника, размещённого в области первого этажа.

Номинальная цветовая температура продуктов «SoraaLaser», предназначенных для наружного лазерного освещения, составляет 5700K, а цветопередача 70-80К.

Лазерный свет доступно сконцентрировать и направить внутрь оптических волокон или волноводов, что является несоизмеримо сложной задачей в случае с источниками на светодиодах.

Инженерами компании «SoraaLaser» разработана система переноса синего лазерного излучения на люминофоры посредством оптоволоконной связи.

Подобное решение позволяет размещать источники света в местах удалённых, защищённых от теплового и электромагнитного воздействия.

Согласно коммерческим планам «SoraaLaser», компания ожидает запуска первой волны коммерческих, статических осветительных приборов к началу 2019 года.

Уникальные разработки обещают улучшение цветопередачи, энергетическую эффективность, высокую производительность для конкретных проектов. Мощные управляемые прожекторы готовятся полностью вытеснить уже устаревшие светодиодные приборы.

Демонстрация работы лазерных фар на автомобиле BMW


По материалам: Architectmagazine

zetsila.ru

НОВЫЕ ЛАЗЕРНЫЕ ФАРЫ "убийцы КСЕНОНА и ДИОДОВ — Volkswagen Caravelle, 2.0 л., 1996 года на DRIVE2

Решил с Вами поделиться информацией,
тема далеко не новая для тех кто интересуется.

Специалисты считают, что внедрение еще более экономичных и эффективных лазерных диодов станет следующим шагом в развитии автомобильной светотехники и в дальнейшем заменит ксеноновые лампы и существующие светодиоды.
Первым фары с лазерными диодами получил серийный гибридный спорткар BMW i8, который должен появиться в продаже в ближайшее время.

В чем же заключаются преимущества лазерного освещения? Все дело в специфических свойствах данного вида освещения, в корне отличающихся от солнечного света и разных видов искусственного. Благодаря тому что лазерное излучение монохромно и когерентно (волны имеют одинаковую длину и постоянную разность фаз), оно обеспечивает почти параллельный пучок света с интенсивностью в 1000 раз выше диодного. Таким образом, лазерные диоды производят световой поток 170 люменов на один ватт потребляемой мощности, тогда как обычные светодиоды — 100 люмен. Чтобы изначально производимый диодами голубоватый луч лазерного света был безопасен для других участников движения, его преобразуют в приятное для глаз человека яркое белое свечение посредством флюоресцентного материала.

Использование лазерных диодов в светотехнике принесет существенную экономию будущим моделям, поскольку энергопотребление у лазерных фар вдвое меньше, чем у диодных. Еще одним существенным преимуществом новой светотехники является ее компактность. При размере порядка 10 микрон (в 100 раз меньше ныне используемых светодиодов) лазерные диоды позволяют сделать автомобильные фары миниатюрнее без потери эффективности. Скорее всего, в будущем размеры головной оптики будут гораздо компактнее. И при этом они смогут сделать обычные фары не такими глубокими, а также наверняка воспользуются возможностью вписывать светотехнику в разнообразные дизайны. Каждый светящийся элемент будет в сотни раз более миниатюрным, нежели светодиодная ячейка, что открывает совершенно новые возможности для их интеграции в автомобиль. Кто знает, что придет в голову дизайнерам? Может, вдесятеро меньшие фары, или превращение их в единую узкую полосу вдоль капота? Тем более что использование новых фар позволит использовать все современные технологии, связанные с этой важной деталью автомобиля – такое, как вращение для адаптивной подсветки во время поворотов, антиослепляющие и другие решения.

Некоторые читатели, одаренные богатым воображением, могут представить себе стильный новый авто, мчащийся по трассе и лазерами испепеляющий препятствия впереди… По счастью, все далеко не столь грозно. Непосредственно лазерный луч и не будет попадать на дорогу: он должен насыщать энергией флуоресцентный фосфорсодержащий материал внутри фары, который будет испускать белый свет, оптимальный для использования в условиях дорожного движения, достаточно яркий, но совершенно безопасный и для препятствий, и для других водителей и пешеходов. При том что энергопотребление фары будет более чем вдвое ниже, чем у обычной на светодиодах, яркость ее будет на много превосходящей сегодняшние аналоги.

Разработчики обещают, что мы увидим новинку в деле уже через год с небольшим – на серийных автомобилях, созданных на базе концепта BMW i8. Их производство уже началось в конце 2012г., так что ждать осталось точной китайской копии, за смешные деньги совсем не долго.

Информация собрана по частям с разных источников.

Друзья светите на дорогу, а не в глаза таких же как Вы водителей!

Всем Удачи!

www.drive2.ru

Лазерные лампочки эффективнее светодиодных ламп

11.11.2011

Лазерный свет

Исследователи из Национальной лаборатории Sandia смешали свет четырех различных твердотельных лазеров, красного, синего, зеленого, желтого цвета, и получили яркий белый свет теплого оттенка, который по параметрам не уступает свету от ламп дневного света и превосходит свет от светодиодных осветительных приборов. Лазерные лампочки, добро пожаловать!

Белый цвет является комбинацией трех основных цветов, но идеальный свет белого цвета состоит из световых волн широкого диапазона, перекрывающего весь диапазон видимых цветов. Стандартом белого цвета является свет Солнца, которое излучает свет во всем диапазоне. Лазеры же наоборот, излучают только в узком диапазоне света, а их свет имеет четкую поляризацию. Смешав свет от трех лазеров можно получить белый цвет, но он будет не совсем естественным, поэтому ранее лазеры и не рассматривались даже как кандидаты на использование в осветительных приборах.

Добавив в белый свет, составленный из трех основных составляющих, четвертую составляющую, свет желтого лазера, ученые из лаборатории Sandia провели ряд тестов, пригласив для участия в тестах группу из сорока добровольцев. Ученые сделали два идентичных красочных и ярких натюрморта, разместив их на импровизированной сцене. Сцена была разделена пополам и каждая часть попеременно освещалась светом теплой, холодной или нейтральной светодиодной лампы, лампы накаливания с вольфрамовой нитью или светом «квадрофонического» лазера. Добровольцы должны были сделать свой выбор касательно того, какое именно освещение им понравилось.

На приведенном снимке вы можете сами увидеть эту импровизированную сцену с двумя натюрмортами. Та часть, которая находится слева, освещена светом нового белого лазера, а та часть, что справа – светом обычной лампы накаливания.

Освещение лазером и лампой накаливания

Проведенные более чем 3200 тестов дали весьма неожиданные результаты. На первом месте с большим отрывом был свет белого лазера, на втором и третьем местах, с небольшим отрывом друг от друга находились свет от белого светодиодного источника теплого и холодного оттенка, остальные же источники света получили лишь незначительную долю голосов добровольцев.

Таким образом оказывается, что несмотря на то, что свет белого лазера имеет не очень хорошие характеристики, он все же лучше, чем свет от светодиодных источников. Помимо этого, твердотельные полупроводниковые лазеры имеют более высокую эффективность нежели светодиоды, их свет более ярок и более направлен, что должно быть удобным для систем местного освещения.

Но! Как всегда имеется одно или несколько «но». Полупроводниковые твердотельные лазеры намного более дороги, чем мощные светодиоды, стоимость которых так же весьма не низка. Следует вспомнить, что и светодиодные осветительные приборы находились точно в таком же положении несколько лет назад по отношению к обычным лампам накаливания и энергосберегающим лампам, а сейчас светодиоды используются практически повсеместно, в различной электронике, для создания больших светодиодных экранов и т.п. Так что, можно и стоит надеяться на то, что лазерные источники света через непродолжительное время станут широкодоступны для применения.

— dailytechinfo.org —

Комментарии:

Биотопливо очень дорогой ценойОкно, вырабатывающее электроэнергию

www.altsyn.com

Будущее за лазерным освещением: ammo1 — LiveJournal

Недавно в Лас-Вегасе завершилась выставка потребительской электроники CES. Журналисты наперебой рассказывали о сворачивающемся в трубочку OLED-телевизоре LG и прототипе китайского телефона со складывающимся пополам экраном, но упустили одну революционную новинку.


Изобретатель синего светодиода Shuji Nakamura, получивший в 2014 году за своё изобретение Нобелевскую премию, и его компания SLD Laser представили первые промышленные образцы лазерных источников света LaserLight.

Принцип работы аналогичен белому светодиоду - свет синего лазера преобразуется в белый с помощью люминофора.

Утверждается, что лазерный источник света в сто раз ярче обычного светодиода. Он даёт 500 лм с одного квадратного миллиметра. К сожалению, пока разработчики ничего не говорят об эффективности, лишь заявляя о малом энергопотреблением и долгом сроке службы.

По словам представителей компании, фары с лазерными источниками света начнут устанавливаться на автомобили класса премиум уже в этом году. LaserLight может быть использован в фонариках (при этом видимость луча достигает 1 км), а также в беспилотных летательных аппаратах, устройствах для поисково-спасательных операций.

На сайте компании есть несколько видеороликов об испытаниях LaserLight. Вот один их них


https://www.youtube.com/watch?v=LXaeVr0dhaM

Одним из преимуществ LaserLight называется очень узкий угол освещения <2°. Это хорошо для фонарей и прожекторов и плохо для обычного освещения, впрочем узкий пучок можно рассеять.

Вполне возможно, что Shuji Nakamura, совершивший революцию в освещении (благодаря его изобретению весь мир теперь освещается светодиодами), совершит вторую революцию и через несколько лет даже в обычных квартирах будет использоваться лазерное освещение.

© 2019, Алексей Надёжин


Основная тема моего блога - техника в жизни человека. Я пишу обзоры, делюсь опытом, рассказываю о всяких интересных штуках. А ещё я делаю репортажи из интересных мест и рассказываю об интересных событиях.
Добавьте меня в друзья здесь. Запомните короткие адреса моего блога: Блог1.рф и Blog1rf.ru.

Второй мой проект - lamptest.ru. Я тестирую светодиодные лампы и помогаю разобраться, какие из них хорошие, а какие не очень.

ammo1.livejournal.com

"Лазерная лампа" всё ближе - Курилка / Трынделка / Talk

Одним из модных направлений, в котором работает конструкторская мысль, – головной свет. И в последнее десятилетие в этой области произошло немало изменений: более эффективный и экономичный ксеноновый свет начинает постепенно вытеснять «галогенки», автомобили премиум-класса уже примеряют модные светодиодные фары, а электроника все чаще берет на себя управление различными режимами освещения в зависимости от ситуации. Инженеры БМВ на этом не останавливаются и предлагают еще пару любопытных новинок. О них мы узнали, побывав на техническом семинаре, организованном баварской компанией.

Скрытый контент

Светодиодная указка

Dynamic Light Spot, что в дословном переводе означает система динамического точечного освещения, – фирменная баварская новинка. Название говорит само за себя: автоматика обнаруживает пешехода и направляет на него свет, указывая водителю, таким образом, на потенциальную опасность. Причем такая подсказка выскакивает раньше, чем объект появляется в лучах ближнего света фар. Следовательно, сидящий за рулем получает фору в несколько секунд или десятков метров, которых часто не хватает, чтобы затормозить или объехать человека.

По проведенным баварцами исследованиям, ближний свет освещает дорогу примерно на 50-85 метров. Но это еще не означает, что на таком расстоянии водитель сможет четко распознать объекты. Сидящий за рулем безошибочно различает одетого в темную одежду пешехода лишь за 29 метров. А если учесть, что при скорости 90 км/ч автомобиль проезжает в секунду 25 метров, уйти от столкновения почти не реально.

Скрытый контент

Расстояние до пешехода чуть меньше 100 м. Водитель автомобиля с системой динамического точечного освещения Dynamic Light Spot (справа) уже заметил человека. А в ближнем свете фар (слева) пешеход появится лишь, когда машина приблизится на пару-тройку десятков метров

Dynamic Light Spot увеличивает это расстояние вчетверо, причем независимо от погодных условий. Этот ассистент получает информацию от системы ночного виденья BMW Night Vision, чья инфракрасная камера с углом зрения 29о (примерно как у среднестатистического водителя) ловит за пару-тройку сотен метров объекты, излучающие тепло. И если сидящий за рулем вовремя не среагировал на предупреждающую картинку, то через некоторое время в дело вступает Dynamic Light Spot. Бьющий примерно на сто метров луч выхватывает из темноты человека или животное и держит его под прицелом, пока тот не выйдет из потенциально опасной зоны. При этом специалисты уверяют, что этот маркирующий свет лишь освещает, но не ослепляет объект. Такую подсказку вряд ли пропустишь, к тому же она интуитивно понятнее водителю, и тот реагирует на нее более однозначно.

Пока на этапе испытаний исполнительный механизм нового ассистента – светодиод с поворотным устройством – встраивают в противотуманные фары. Не исключено, что когда разработка дойдет до конвейера, эти операции поручат основным фарам – ксеноновым модулям с автоматическим (в зависимости от дорожной ситуации) распределением света или так называемым LED-Arrays, многосекционным светодиодным блокам. За последними будущее, так как они более эффективны и потребляют меньше энергии, что напрямую сказывается на расходе топлива и выбросах CО2. Хотя даже при нынешнем оборудовании, дополнительные затраты незначительны, тем более, если вспомнить, что речь идет о безопасности – чуть более 100 Вт съедают инфракрасная камера и дополнительные источники света, что соответствует лишнему 0,1 л топлива на 100 км.

Скрытый контент

Система Dynamic Light Spot может держать в поле зрения несколько объектов. Лишь только в объектив инфракрасной камеры попадет человек или животное, луч света сразу укажет на него

Когда Dynamic Light Spot появится на серийных моделях BMW? Баварцы конкретных сроков не называют, однако намекают, что это вопрос нескольких месяцев, а не лет. Поначалу динамическое точечное освещение будут предлагать как опцию к системе ночного виденья, а потом и как базовое оборудование в дорогих версиях. И это оправдано – за то время, пока тестировали Dynamic Light Spot, ни один человек, и ни одно животное не пострадали, хоть в среднем с периодичностью раз в час возникали в поле зрения приборов.

Скрытый контент

Разница между светодиодными и лазерными фарами видна издалека. Лазерный свет намного эффективнее светодиодного – в первом случае источник мощностью 1 Вт выдает световой поток 170 лм (люмен), а во втором – лишь 100 лм

Лазер - ярко и экономично

Совсем недавно на серийных моделях появились светодиодные фары, а разработчики из научно-исследовательского центра в городе Гархинг (Garching), что под Мюнхеном, уже предлагают новый источник света для головной светотехники – лазер.

Скрытый контент

Устройство лазерной фары:

1. Источники лазерного излучения.

2. Лазерные лучи.

3. Зеркала, направляющие лазерные лучи на элемент из флуоресцентного материала.

4. Элемент из флуоресцентного материала.

5. Линза, формирующая и направляющая световой пучок на зеркало.

6. Зеркало, формирующее световой поток, освещающий дорогу

Скрытый контент

В корпусе каждой фары расположены три источника лазерного излучения мощностью около 1 Вт каждый. Лучи направляют при помощи системы зеркал на элемент из флуоресцентного материала. При поглощении последним энергии выделяется белое свечение, из которого формируется световой пучок.

Преимущества лазерного излучения перед солнечным или светом от других известных источников в том, что оно монохромное. Иными словами, состоит из волн одинаковой длины (или одной частоты). Кроме того, это излучение когерентно – колебания имеют постоянную разность фаз, не зависящую от времени (самый распространенный пример – синусоидальные колебания одной частоты). Благодаря этим качествам, световой поток обладает высокой плотностью; излучение в тысячи раз интенсивнее, чем у нынешних светодиодов. Значит, для их работы потребуется меньшая мощность и, как следствие, снизится расход энергии и расход топлива.

Скрытый контент

Многие помнят фантастические фильмы и произведения, в которых лазер выступал опасным и разрушительным оружием. В зависимости от конструкции и мощности установки, эти лучи действительно могут нанести непоправимый ущерб. Но не в конструкции фар. Ведь тонкий лазерный луч лишь воздействует на флуоресцентный материал, который и дает мягкий белый свет. Последний по спектру цветов ближе к дневному – самому приятному и безопасному для человеческого глаза.

Скрытый контент

В числе главных преимуществ лазерных фар – компактность источников света. И хотя светодиоды по размерам тоже невелики (их длина около миллиметра) лазерные диоды в сто раз короче (10 мкм). На первый взгляд, в абсолютных единицах разница ничтожная, но не исключено, что она окажется существенной при проектировании новых конструкций. Правда, в ближайшее время размер фар у моделей BMW вряд ли сильно уменьшится, по крайней мере, лицевая часть. Ведь при разработке новой светотехники все больше уделяют внимание дизайну, она служит важной составляющей облика будущих моделей. Зато, наверняка, понадобится сделать корпус компактнее по глубине – это облегчит установку светотехники и компоновку подкапотного пространства.

Скрытый контент

Никто не мешает обучить лазерные фары множеству полезных функций, которые сейчас возложены на светотехнику с ксеноновыми лампами и светодиодами. Например, то же динамическое точечное освещение Dynamic Light Spot или интеллектуальный неослепляющий дальний свет. Впрочем, баварцы обещают с появлением лазерных фар расширить этот список. Что будет в числе ноу-хау? Разработчики из Гархинга пока молчат. Предположительно, познакомиться с супер-светом можно будет через пару-тройку лет, когда появится серийный вариант купе BMW i8. Что ж, подождем светлого будущего?

Анатолий Кравченко

Фото: BMW

Скрытый контент

svetovik.info


Смотрите также