Как работает радар


Радар. Виды и работа. Применение и особенности. Устройство

Радар – это радиолокационная электронная станица, применяемая для определения расположения в пространстве крупных объектов, их формы, скорости, направления движения. На базе радиолокационной станции построено множество приборов, используемых в авиации, судоходстве, военной обороне, бытовой жизни.

Как работает радар

Радарная станция работает по принципу радиолокации. Она генерирует радиоволны, отправляет их в пространство в строго определенном диапазоне и направлении. При движении волны сталкиваясь с объектами и ландшафтом частично отражаются обратно, после чего их эхо воспринимается чувствительной частью прибора. На основании информации как быстро вернулась отраженная волна, расчетная часть устройства определяет местоположение объекта. Мощность отраженного сигнала дает возможность рассчитать фактические размеры обнаруженной преграды.

Принцип работы радарной станции основан на эхолокации, используемой летучими мышами для ориентирования в пространстве. При разработке прибора были задействованы похожие механизмы, но вместо ультразвукового сигнала используются радиоволны, имеющие более высокий радиус действия.

Простейшая классическая радиолокационная станция состоит из следующих компонентов:

В классическом понимании функцию передатчика выполняет импульсный генератор. Он выступает в качестве контролируемого источника электромагнитного сигнала.

Антенна излучает сгенерированный зондирующий сигнал в необходимом направлении, затем служит для приема отраженных обратно волн. Излучение и прием выполняются поочередно. Также возможно применение двух антенн. В таком случае одна отвечает за отправление сигнала, а вторая за его прием. Они устанавливаются на определенном отдалении друг друга, и калибруются между собой. Применение двух антенн увеличивает точность и быстродействие радара.

Применяемый в радаре приемник отвечает за прием и усиление отраженной волны. Он считывает данные с антенны, и выполняет их анализ для получения окончательных результатов, выдаваемых на экран устройства.

Методы работы радаров

Радар может работать на разных физических принципах анализа данных. Одни из них требуют сложной технической составляющей, что увеличивает стоимость станции, а другие дают сравнительно неточные результаты, но позволяют производить недорогие приборы.

Радарные станции работают по трем основным методам:
  1. Частотный.
  2. Фазовый.
  3. Импульсный.
Частотный метод

Метод обнаружения частотным излучением подразумевает применение модуляции излучаемого непрерывного сигнала. Прибор отправляет его в пространство и фиксирует отражение. Прибор проводит расчеты на основании информации о том, сколько времени ушло на движение волны туда и обратно. Такой метод обнаружения имеет некоторые достоинства:

При выполнении радиолокации частотным методом обязательно применение двух антенн. Частотный принцип работы априори подразумевает улавливание большого количества помех второй антенной, создаваемых первой. Отраженные и только отправляемые сигналы мешают друг другу, что негативно влияет на чувствительность.

Метод фазовой радиолокации

Радар данного типа применяется для исследования места положения и размера движущихся объектов. Передающее устройство радара может работать непрерывно или импульсами. Метод заключается в определении разности фаз между отправляемым и воспринимаемым сигналом. Оборудование, работающее по фазной технологии, не воспринимает помехи от неподвижных поверхностей. Это достаточно распространенные приборы, главный недостаток которых в невозможности определения точной дистанции до перемещающегося объекта.

Импульсный метод

Это современный метод обнаружения объектов в пространстве. Радар сначала создает короткий импульс длиной всего в микросекунду, после чего прекращает трансляцию и воспринимает эхо от отправленной волны. Такая технология исключает появление искажения от одновременной генерации волн и восприятия их эха.

Такие приборы имеют фиксированный интервал повтора импульсов. Его длина рассчитывается в зависимости от того, на каком расстоянии ведется поиск. Частота повторений у радаров дальнего обзора составляет сотни импульсов в секунду.

Радар, работающий по импульсному методу обнаружения, имеет много достоинств:
Не лишены импульсные радары и недостатков:
Где применяются радары
Радары являются крайне полезным оборудованием для обнаружения объектов в пространстве и различных препятствий при движении транспорта. Их применяют в:

В авиации радар выполняет главную навигационную функцию. Его применение позволяет отслеживать воздушные суда, предотвращать их столкновение между собой. В условиях плохой видимости именно радары предупреждают пилотов о возможных преградах, таких как выступы скал. Радарами оснащаются все аэропорты и аэродромы. По ним непрерывно отслеживается местоположение воздушных судов. Авиационные радары направлены в небо, поэтому они не воспринимают объекты на земле.

Радары применяются в морской и речной навигации. Их наличие позволяет предотвратить столкновение между судами. Также радарные станции создают картину рельефа дна. Они предупреждают о возможных рифах, скальных уступах, отмелях. С помощью радаров осуществляется поиск спасателями пострадавших судов. Судоходные радары не реагируют на воздушные судна. Приборы данного типа работают в частотном диапазоне, поскольку имеют высокую точность замеров на близком расстоянии. Это позволяет видеть точную картину особенностей рельефа дна.

Наиболее точные радары с большим радиусом действия используются в военном направлении. Они позволяют отслеживать передвижение морских и воздушных судов, в том числе и ракет. Ими оснащаются установки ПВО. Стационарные радары устанавливаются на военных и стратегически важных объектах.

Радар для рыбной ловли рассчитан на малый радиус действия. Его задача заключается в обнаружении в воде рыбных косяков. Судна промышленной ловли используют данные радара для обнаружения мест локации рыбы перед сбросом сетей. В любительской ловле приборы преимущественно применяются для исследования рельефа дна. Устройства более высокого ценового сегмента дополнительно позволяют обнаружить крупных рыбных особей и подсказать, куда забросить снасть.

Любительские радары имеет очень малый вес, при этом действуют всего на несколько десятков метров. Для их срабатывания антенна прибора должна погрузиться в воду. Зачастую радары для рыбной промышленной ловили и навигационные являются одним комбинированным прибором. Это удобно, и позволяет облегчить управление судном, уменьшить нагромождение рубки техникой. Такие устройства могут оснащаться монохромным или цветным экраном.

Дорожные радары являются очень узкоспециализированным оборудованием, основная задача которого заключается только в определении скорости движение строго определенного транспорта. Устройство измеряет ускорение не всех машин из потока, а только тех, на которое направлено. Это достаточно компактные приборы. Для их точного срабатывания требуется ручное наведение. Радары данного типа применяются подразделениями дорожной полиции всего мира, а полученные с их помощью данные о скорости являются доказательствами нарушения правил дорожного движения.

Радардетектор

Тесно связанным прибором с радаром является радардетектор. Это специализированное оборудование, применяемое для обнаружения сигналов радаров. Прибор способен предупредить о вхождении в зону действия волн от радарной станции.

Это предупреждающее оборудование, преимущественно используемое водителями автотранспорта. Прибор, измеряющий скорость движения автомобилей, отправляет импульсы, которые рассеиваются далеко за пределами чувствительности прибора. Фон из таких волн определяется установленным в автомобиле детектором до того, как машина попадает в чувствительную зону действия радара. Прибор предупреждает водителя световым или звуковым сигналом о проведении замеров скорости его движения. Это позволяет заблаговременно сбросить ускорение, если оно превышает максимально разрешенное. Таким образом, при въезде на участок дороги радиуса действия радара, тот уже не обнаруживает нарушения ПДД.

Эффективность детекторов позволяет засечь работу радара задолго до того, как тот сможет замерить скорость авто. Это связано с тем, что радар постовых служб работает по принципу эффекта Допплера. Он сначала отправляет сигнал, потом ожидает, пока тот отразится. Для измерения скорости движущегося объекта нужно определенное время на исследование выделенного объекта, чтобы получить данные о скорости. Радардетектор выполняет похожую функцию, что и приемник самого радара. Он улавливает сигналы и сразу сообщает об этом водителю. Тот успевает сбросить скорость, пока прибор еще не сфокусировался на машине.

Похожие темы:

electrosam.ru

Как работает радар-детектор - полезная информация об электронике

Автомобильный радар-детектор – это устройство, способное улавливать сигналы полицейских радаров и оповещать об этом водителя. Радар-детектор может быть как отдельным гаджетом, так и комбинированным с видеорегистратором. Некоторые называют радар-детектор «антирадаром», но это неправильно, так как в действительности это два разных устройства: детектор является пассивным приемником сигнала, а антирадар – активным источником, который посылает помехи и может исказить показания полицейского радара. Антирадары запрещены в России, и за их использование предусмотрена административная ответственность. Принцип работы:

Большинство радаров ДПС работают по следующему принципу: они посылают радиосигнал, который отражается от автомобиля и возвращается обратно, устройство сравнивает частоту отраженного сигнала с исходной частотой, и определяет скорость движения объекта по изменениям частоты волны – это называется эффектом Доплера. Получается, что полицейский радар работает с отраженным сигналом, в том время как радар-детектору нужен только исходящий сигнал, и в данной ситуации у детектора есть преимущество.

Сигнал, излучаемый радаром, может пройти расстояние до трёх километров и быть зафиксированным детектором. Самому же радару для вычисления скорости движения автомобиля нужно находиться достаточно близко – как правило, не дальше одного километра, а некоторые радары способны измерить скорость движения объекта лишь на расстоянии в 300-400 метров. Поэтому, имея радар-детектор, можете быть уверенным, что вы обнаружите радар раньше, чем он вас.


Возможные проблемы:

Радар-детектор – очень чувствительное устройство, и можно не переживать о том, что он пропустит работающий и излучающий радиоволны радар. Но существуют безрадарные комплексы контроля скорости, например, комплекс «Автодория», который с помощью камер вычисляет с какой скоростью автомобиль преодолел расстояние между двумя разными камерами. Существуют также ручные радары с функцией Instant-On, которые излучают радиоволны только в момент нажатия кнопки. В первом случае обычный радар-детектор бессилен, с ручными радарами так же возможны проблемы. Но инженеры придумали выход из этой ситуации, и добавили к радар детектору модуль GPS, который определяет местоположение автомобиля по сигналам от спутников и, ориентируясь по заранее загруженным базам данных, оповещает водителя и о безрадарных комплексах «Автодория», и о мобильных постах ДПС. В ассортименте «Каркам Электроникс» представлен радар-детектор Каркам Стелс 3+, который оснащен модулем GPS, что позволяет ему максимально эффективно обнаруживать радарные и безрадарные комплексы любого типа.

Ещё одной распространенной проблемой являются ложные срабатывания радар-детекторов. Дело в том, что детектор настроен на определенные радиочастоты, и в этих же частотах могут создаваться помехи от датчиков автоматических дверей супермаркетов, от высоковольтных ЛЭП, спутниковых антенн, и даже от парктроников или радар-детекторов в других автомобилях. К сожалению, на сегодняшний день никакие детекторы не могут гарантированно исключить ложные срабатывания, поэтому производители ищут способы хотя бы минимизировать их. В качестве одной из таких мер были придуманы различные режимы работы радар-детектора, такие как «Город», «Город 1», «Город 2», «Трасса». В режимах для городской езды уменьшается чувствительность детектора и даже отключаются определенные диапазоны частот, а в режиме «Трасса» наоборот, чувствительность устройства становится максимальной.

Учитывая то, что с каждым годом на дорогах нашей страны появляется всё больше радаров и камер, а штрафы за нарушение скорости растут, радар-детектор становится всё более выгодным приобретением, особенно для любителей быстрой езды. Заплатив один раз за устройство вы обезопасите себя от необходимости платить за каждую пропущенную «засаду».


carcam.ru

устройство, параметры и принцип действия

Что может быть прекрасней – надавить гашетку в пол до упора и мчаться по пустому и просторному шоссе на своём любимом «железном коне».

Масса адреналина, чувств, эмоций. Да, конечно такое можно себе позволить, но только на специализированном треке. В противном случае, водитель будет оштрафован за превышение скорости дорожного движения и создание аварийной ситуации, если же его не предупредит «антирадар» о приближении к постам ГИБДД с устройством фиксации скорости.

В этой небольшой, но крайне интересной статье вы узнаете, как работает антирадар и что это за прибор.

Различия: антирадар и радар-детектор?

Радар — детектор — это устройство, которое определяет наличие у работников ГИБДД радаров по их излучению.
Антирадар – это устройство, которое способно создавать помехи для ГИБДДшных радаров, в связи с чем не представляется возможным точно зафиксировать скорость того или иного транспортного средства.

При отсутствии помех на автостраде, средняя дальность фиксации радара составляет до 4 км., в городском цикле от одного квартала до полутора километров, в зависимости от густоты радиосигналов. Современные устройства способны работать в трёх диапазонах: X, K, и лазерный.

Соответственно и стоимость будет отличаться в зависимости от количества сканирования диапазонов. Современные приборы с точностью до 99,9 % смогут предупредить о наличии мобильных радаров вблизи.

Краткая характеристика частот:

Диапазон X (10.5 ГГц) — работают устройства постоянного действия, которые морально устарели (15 % пользователей).

Диапазон K (24.15 ГГц) — устройства, работающие путём посыла импульсных электромагнитных волн. Широкое применены в РФ (65 % пользователей).

Диапазон Ka (34.7 ГГц) – антирадары нового типа (35 % пользователей). Принцип работы — определение скорости в кротчайшие сроки с вероятностью 97 %.

Согласно правил фиксации скорости движения автомобиля, работник ГИБДД должен зафиксировать окончательные данные только после повторного фиксирования скорости, для объективности и точности. Но в промежуток между первой и второй фиксацией водитель может снизить скорость, соответственно об объективности речи не может идти.

Основные принципы работы антирадара

Принцип работы несколько схож с радиоприемником, работающий том диапазоне, что и радары органов правопорядка.

Нажимая пусковую клавишу, сотрудник ГАИ с помощью прибора посылает сигнал в виде волны в сторону интересующего его автомобиля.

Волна достигая транспортного средства, ударяется об него и возвращается обратно в радар, который обработав данные показывает скорость на дисплее.

Так вот, в тот момент, когда посланная волна ударяется об авто, антирадар её «перехватывает» и подаёт зуммер водителю, предупреждая об настигающей опасности. Далее многое зависит от водителя и его умения и сообразительности.

Что же касается качества самих приборов, то не стоит сомневаться, они выполнены на грани максимальной чувствительности к «неприятелям», несмотря на разную ценовую политику, которая зависит в основном от года выпуска, формы и качества материала для сборки, всего лишь.

Советы по подбору устройства

Основное отличие – это диапазон захвата частот. Радары, используемые ГИБДД, пеленгуют на различных частотах, соответственно антирадар должен быть не хуже.

Согласно информации на форумах автовладельцев, следует, что популярностью и спросом пользуются отечественного производства, за счёт большей приспособленности и точности, чем иностранные «братья».

Параметры, характеризующие точность и качество прибора:

• Количество определения диапазонов частот.
• Радиус действия сигнала.
• Точность различия ложных сигналов и настоящих.
• Скорость обработки данных.
• Процент достоверности результата.
• Надежность, качество.

Помехи для прибора

Главным условием корректности работы антирадара является его установка. Если будет установлен неправильно – то и работа будет нестабильная, так как любое препятствие снижает качество сигнала.

Монтируют устройство как можно выше, для расширения дистанции сканирования. Также следует учитывать тип антирадара и его диапазоны пеленгации.

Хоть модели и совершенствуются из года в год, не следует нарушать правила дорожного движения и будьте вежливы как по отношению к себе, так и к другим участникам.

autovogdenie.ru

Принципы работы радар детектора - полезная информация об электронике

Автомобильные радар-детекторы - компактные устройства, которые способны отслеживать сигналы, которые испускаются радарами мобильных и стационарных постов ГИБДД. Иными словами, радар-детектор заблаговременно предупреждает водителя о приближении к полицейским радарам. Многие, ошибочно считают, что радар-детектор и антирадар это одно и тоже, на самом же деле, это утверждение в корне неверно. Антирадары запрещены на территории РФ, так как они подавляют работу (заглушают) радарных комплексов и создают всевозможные помехи. Радар-детектор в свою очередь – это пассивный приемник, который не заглушает сигнал, а просто предупреждает о его наличии.

В России радар-детекторы обрили большую популярность, так как сильно экономят деньги своих владельцев, позволяя им избежать серьезного штрафа за превышение скорости. Об особенностях и принципе действия радар-детекторов и пойдет речь.


Принцип работы

Превышение скорости – одно из самых распространенных нарушений на отечественных дорогах. Сотрудники ГИБДД оснащены современными радарами для определения скорости, как следствие, количество штрафов резко выросло. Каждый год повышаются размеры штрафов за превышение скорости.

Радар детектор способен засечь сигнал с мобильных и стационарных постов ГИБДД, информируя водителя посредством светового или звукового сигнала. Причем любой радар-детектор может уловить близость радаров задолго до того, как автомобиль попадет в зону их действия. Соответственно, водитель, получив своевременный сигнал, может просто снизить скорость движения и, тем самым, избежать штрафа. Чаще всего, электропитание радар-детектора осуществляется через прикуриватель автомобиля, а компактные габаритные размеры, позволяют закрепить устройство на лобовом стекле или приборной панели автомобиля.

Принцип работы радар-детектора достаточно прост. Радары, применяемые дорожной полицией, основаны на использовании так называемого эффекта Допплера - частота сигнала, отраженного от движущегося автомобиля, сравнивается с исходной частотой. При этом для оптимального приема и обработки отраженного сигнала исходящий радиосигнал должен быть достаточно сильным. Поскольку радары ГИБДД имеют дело с отраженным сигналом, а радар-детекторы только с прямым, последние способны обнаружить радар постовой службы раньше, чем произойдёт фиксация скорости автомобиля.

Радары ГИБДД могут измерить скорость автомобиля на расстоянии от 400 до 800 метров, а вот радар-детекторы фиксируют радиосигнал на расстоянии от одного до трех километров. По сути, радар-детектор работает как система раннего оповещения о приближении к посту ГИБДД, что дает владельцу автотранспортного средства время для сброса скорости.



Особенности и виды радар-детекторов

Основным условием правильной работы радар-детектора является то, что он должен работать на той же частоте что и радар ГИБДД. Важно отметить, что большинство устройств, которые применяются полицейскими в России, работают в диапазонах X (10 525МГц) и K (24150МГц). При этом радары с X-диапазоном достаточно сильно устарели и в последнее время все чаще встречаются радары, которые работают именно в К-диопазоне. Также, существует еще один тип радаров, которые начали применяться сравнительно недавно и работают они в Ка-диапазоне с частотой 34 700 МГц. Исходя из этой информации следует понять, что прежде чем приобрести тот или иной радар-детектор, стоит убедиться, что он работает в перечисленных диапазонах, в ином случае, эффективность радар-детектора резко снижается.

Устройства, которые используют сотрудники ГИБДД для измерения скорости, являются импульсными, то есть они посылают короткие волны, расходящиеся лучами, которые затем отражаются от встреченных ими объектов. Не смотря на то, что что такой тип радаров, позволяют достаточно быстро определить скорость движения автомобиля, такой сигнал так-же быстро перехватывается радар-детектором.

Практически все радар-детекторы, которые представлены сегодня на рынке, можно разделить на две группы. Устройства из первой группы используют «прямое детектирование», иными словами, они настроены на улавливание частот, которые испускают радары. Они ловят небольшое количество помех и не создают никаких излучений, так как являются посевными.

Но технологии идут вперед и большинство производителей уже отказались от прямого усиления в пользу усиления на основе супергетеродина. Это радар-детекторы из второй группы, которые отличаются тем, что сами устройства генерируют те же частоты, что испускают радары ГИБДД. Далее эти частоты сравниваются, и при совпадении устройство выдает водителю предупреждающий сигнал. Преимуществом таких радар-детекторов является то, что они обладают большей чувствительностью. Собственно, чувствительность вместе с возможностью отсеивания ложных сигналов являются важными параметрами для любого радар-детектора.

Методы обработки сигнала

Одной из главных частей радар-детектора является блок обработки данных, поступающих с сенсоров и антенн. Существует несколько методов обработки сигналов. Наиболее устаревшим методом, является – аналоговый. Он уже практически не применяется, так-как обладает низкой скоростью обработки и плохими возможностями для отсеивания ложных помех. Более распространёнными являются цифро-аналоговый и цифровой методы обработки сигналов. Они обладают высокой скоростью обработки и способны достаточно эффективно отсеивать ложные сигналы и помехи.

Сам блок представляет собой микропроцессорный комплекс, который может обрабатывать до 8-ми сигналов одновременно. Естественно, что предпочтительнее приобретать радар детекторы с цифровой обработкой сигнала.

Дополнительный функционал

Также при выборе радар-детектора нужно обращать внимание на такие технические характеристики, как дальность работы и защищенность от ложных срабатываний. Радар-детектор может еще обладать и разнообразными дополнительными функциями. В частности, возможностью оповещения водителя голосовым сигналом предупреждения или регулировкой подсветки для того, чтобы устройством можно было комфортно пользоваться при движении автомобиля в темное время суток. Однако основным критерием для выбора радар-детектора, как уже говорилось выше, является именно способность обрабатывать сразу несколько сигналов.

carcam.ru

как они работают, для чего нужны и как правильно выбрать?

15.09.2018 Радар детектор в действии

Радар-детектор или антирадар

Радар-детектор – это устройство поиска полицейских радаров, их нередко называют антирадарами, но это – не одно и тоже. Если первое устройство предупреждает о полицейском радаре, то второе – заглушает его волну и искажает её, а это – противозаконно.

Что касается радар-детекторов, то пользоваться таким прибором не только можно, но даже нужно. Сотрудники Госавтоинспекции сами рекомендуют эти устройства, иногда идя на хитрость – устанавливая на участках маячки или ложные радары, чтобы предупредить невнимательных водителей об обязательном снижении скорости и предотвратить ДТП.

Радар-детектор: зачем он нужен

Радар-детекторы – это устройства, которые позиционируются не для гонщиков, а наоборот – для спокойной, кмфортной езды. Это устройство не позволит вам ездить со скоростью 200 км/ч. Надавить на педаль «газ» вы конечно можете до упора, но радар-детектор не освобождает вас от наказания за превышение скорости. Кроме того, если на такой высокой скорости, радар-детектор у вас сработает, вы вряд ли успеете снизить скорость. Резкое торможение на таких скоростях будет даже опаснее.

В радар-детекторах речь идет о превышении скорости на 20-30 км/ч. Если ваша скорость превышена в таких диапазонах, то выйти из-под штрафа – вполне реально. Польза радар-детектора на трассе очевидна.

В последнее время, в больших городах, участилась установка камер, которые следят за скоростью и порой не успеваешь уследить где они стоят. Поэтому, как в городе так и, конечно же, на трассе радар-детекторы будут очень полезны.

Как выбрать радар-детектор:

Радар и антирадар: принцип работы

Радиолокационные детекторы - это небольшие устройства, которые помогают идентифицировать присутствие радаров, например, используемых полицией для определения местонахождения автомобилей, движущихся по скоростному пределу. Некоторые типы радиолокационных детекторов также идентифицируют наличие лазерных пушек, которые могут быть полезны для тех, кто хочет избежать ловушек скорости; их легко могут пропустить традиционные радар-детекторы. Чтобы понять, как работает радар-детектор, полезно понять, как работают базовые радары.

Радары часто используются для определения расстояния и скорости, например, чтобы понять, как далеко находится объект и как быстро он движется. Радиолокационное устройство излучает радиоволну, которая движется со скоростью света и возвращается к радарному устройству, когда он встречает объект на своем пути. В зависимости от того, сколько времени потребуется для того, чтобы радиоволна ударила по указанному объекту (например, дерево на неопределенном расстоянии) и сколько времени требуется, чтобы волна вернулась, радарное устройство может определить расстояние между устройством и дерево.

Когда радиолокатор используется для определения скорости (например, скорости, с которой движется автомобиль), частота радиоволн возвращенного сигнала изменяется, поскольку автомобиль движется (в физике это явление называется эффектом Доплера). Если автомобиль движется к радарному устройству, обратный сигнал имеет более короткое расстояние для движения и частота радиоволн увеличивается. Радиолокационное устройство может затем использовать изменение частоты для определения скорости движения автомобиля. В лазерных пушках вместо радиоволн используются когерентные (лазерные) генераторы.

Принцип работы радара и антирадара

Простой радар-детектор идентифицирует радиолокационные устройства на основе излучаемых ими радиоволн. По сути, радиолокационные детекторы просто выступают в качестве радиоприемников, подбирают конкретные частоты, используемые радиолокационными устройствами, в частности, радиолокационными пушками, используемыми полицией для идентификации и улавливания автомобилей нарушителей. Поскольку радиолокационные устройства, используемые полицией, используют широкую сеть радиоволн, но отслеживают только одну конкретную цель, радиолокационные детекторы в движущихся автомобилях часто захватывают радиоволны прежде, чем автомобиль попадает в достаточно близкий диапазон полицейской машины, которую нужно отслеживать.

Другие, более совершенные устройства - антирадары, не только обнаруживают полицейский радар, но и могут в значительной степени сбросить показания, получаемые полицейским радаром. В этих типах радиолокационных детекторов радиопередатчик излучает скремблированный сигнал (называемый помеховым сигналом), который принимает исходный обнаруженный сигнал и добавляет дополнительные радиосигналы. Когда скремблированный сигнал достигает радара, у полиции возникают проблемы с точным считыванием скорости. Аналогичная система существует для лазерных пушек (лидар), в которых лазерный детектор испускает пучок света. Повторим, что с точки зрения законодательства антирадары и другие какие-либо препятствия для работы радаров являются незаконными.

Разумеется, существуют различные виды радаров, к которым должен быть чувствителен радар-детектор. Радиолокатор с x-диапазоном имеет низкочастотный выходной сигнал, что делает его относительно легким для обнаружения от 2 до 4 миль. Однако устройства, отличные от полицейских радаров, генерируют сигналы х-диапазона, включая диапазоны волн, предназначенных для радиоконтроля гаражных ворот. Радиолокатор K-диапазона чаще всего используется полицией и имеет небольшую длину волны. Радиолокатор k-диапазона может вести точное считывание с расстояния от 0,5 до 2 миль, что затрудняет раннее обнаружение из-за небольшой длины волны.

3drive.ru

Радары на борту: как работает радиолокатор и для чего нужна АФАР?

Сегодня авиация немыслима без радаров. Бортовая радиолокационная станция (БРЛС) является одним из самых важных элементов радиоэлектронного оборудования современного летательного аппарата. По мнению экспертов, в скором будущем БРЛС останутся основным средством обнаружения, сопровождения целей и наведения на них управляемого оружия.

Мы попытаемся ответить на самые распространенные вопросы о работе РЛС на борту и рассказать, как создавались первые радары и чем смогут удивить перспективные радиолокационные станции.

Когда появились первые радары на борту?

К идее использования радиолокационных средств на самолетах пришли несколько лет спустя после того, как появились первые наземные РЛС. У нас в стране прототипом первой БРЛС стала наземная станция «Редут».

Одной из основных проблем стало размещение аппаратуры на самолете – комплект станции с источниками питания и кабелями весил примерно 500 кг. На одноместном истребителе того времени установить такую аппаратуру было нереально, поэтому станцию было решено разместить на двухместном Пе-2.

Первая отечественная бортовая радиолокационная станция под названием «Гнейс-2» была принята на вооружение в 1942 году. В течение двух лет было выпущено более 230 станций «Гнейс-2». А в победном 1945 году «Фазотрон-НИИР» начал серийный выпуск самолетной радиолокационной станции «Гнейс-5с». Дальность обнаружения цели достигала 7 км.

За рубежом первая авиационная РЛС «AI Mark I» – британская – была передана на вооружение немного раньше, в 1939 году. Из-за большого веса ее устанавливали на тяжелые истребители-перехватчики Bristol Beaufighter. В 1940 году на вооружение поступила новая модель – «AI Mark IV». Она обеспечивала обнаружение целей на дальности до 5,5 км.

Из чего состоит бортовая РЛС?

Конструктивно БРЛС состоит из нескольких съемных блоков, расположенных в носовой части самолета: передатчика, антенной системы, приемника, процессора обработки данных, программируемого процессора сигналов, пультов и органов управления и индикации.

Сегодня практически у всех бортовых РЛС антенная система представляет собой плоскую щелевую антенную решетку, антенну Кассегрена, пассивную или активную фазированную антенную решетку.

Современные БРЛС работают в диапазоне различных частот и позволяют обнаруживать воздушные цели с ЭПР (Эффективная площадь рассеяния) в один квадратный метр на дальности в сотни километров, а также обеспечивают сопровождение на проходе десятки целей.

Кроме обнаружения целей, сегодня БРЛС обеспечивают радиокоррекцию, полетное задание и выдачу целеуказания на применение управляемого бортового оружия, осуществляют картографирование земной поверхности с разрешением до одного метра, а также решают вспомогательные задачи: следование рельефу местности, измерение собственной скорости, высоты, угла сноса и другие.

Как работает бортовой радиолокатор?

Сегодня на современных истребителях используются импульсно-доплеровские РЛС. В самом названии описан принцип действия такой радиолокационной станции.

Радиолокационная станция работает не непрерывно, а периодическими толчками – импульсами. В сегодняшних локаторах посылка импульса длится всего лишь несколько миллионных долей секунды, а паузы между импульсами – несколько сотых или тысячных долей секунды.

Встретив на пути своего распространения какое-либо препятствие, радиоволны рассеиваются во все стороны и отражаются от него обратно к радиолокационной станции. При этом, передатчик радара автоматически выключается, и начинает работать радиоприемник.

Одной из основных проблем импульсных РЛС является избавление от сигнала, отражающегося от неподвижных объектов. Например, для бортовых РЛС проблема в том, что отражение от земной поверхности затеняет все объекты, лежащие ниже самолета. Эти помехи устраняют, используя эффект Доплера, согласно которому частота волны, отраженной от приближающегося объекта, увеличивается, а от уходящего объекта – уменьшается.

Что означают Х, К, Ка и Кu диапазоны в характеристиках РЛС?

Сегодня диапазон длин волн, в котором работают бортовые радиолокационные станции чрезвычайно широк. В характеристиках РЛС диапазон станции указывается латинскими буквами, к примеру, Х, К, Ка или Кu.

Например, РЛС «Ирбис» с пассивной фазированной антенной решеткой, установленная на истребителе Су-35, работает в X-диапазоне. При этом дальность обнаружения воздушных целей «Ирбиса» достигает 400 км.

X-диапазон широко используется в радиолокации. Он простирается от 8 до 12 ГГц электромагнитного спектра, то есть это длины волн от 3,75 до 2,5 см. Почему он назван именно так? Есть версия, что во время Второй Мировой войны диапазон был засекречен и поэтому получил название X-диапазона.

Все названия диапазонов с латинской буквой К в названии имеют менее загадочное происхождение – от немецкого слова kurz («короткий»). Этот диапазон соответствует длинам волн от 1,67 до 1,13 см. В сочетании с английскими словами above и under, свои названия получили диапазоны Ka и Ku, соответственно находящиеся «над» и «под» K-диапазоном.

Радары Ka-диапазона способны работать на коротких расстояниях и производить измерения сверхвысокого разрешения. Такие радиолокаторы часто применяются для управления воздушным движением в аэропортах, где с помощью очень коротких импульсов – длиной в несколько наносекунд – определяется дистанция до самолета.

Часто Ка-диапазон используется в вертолетных радарах.

Таким образом, каждый диапазон имеет свои преимущества и в зависимости от условий размещения и задач, БРЛС работает в различных диапазонах частот. Например, получение высокой разрешающей способности в переднем секторе обзора реализует Ка-диапазон, а увеличение дальности действия БРЛС делает возможным Х-диапазон.

Что такое ФАР?

Очевидно, для того чтобы принимать и излучать сигналы, любому радару нужна антенна. Чтобы уместить ее в самолет, придумали специальные плоские антенные системы, а приемник и передатчик находятся за антенной. Чтобы увидеть разные цели радаром, антенну нужно двигать. Так как антенна радара достаточно массивная, двигается она медленно. При этом, становится проблематична одновременная атака нескольких целей, ведь радар с обычной антенной держит в «поле зрения» только одну цель.

Современная электроника позволила отказаться от такого механического сканирования в БРЛС. Устроено это следующим образом: плоская (прямоугольная или круглая) антенна разделена на ячейки. В каждой такой ячейке находится специальный прибор – фазовращатель, который может на заданный угол изменять фазу электромагнитной волны, которая попадает в ячейку. Обработанные сигналы из ячеек поступают на приемник. Именно так можно описать работу фазированной антенной решетки (ФАР).

А если точнее, подобная антенная решетка со множеством элементов-фазовращателей, но с одним приемником и одним передатчиком называется пассивной ФАР. Кстати, первый в мире истребитель, оснащенный радиолокатором с пассивной ФАР, – наш российский МиГ-31. На нем была установлена РЛС «Заслон» разработки НИИ приборостроения им. Тихомирова.

Для чего нужна АФАР?

Активная фазированная антенная решетка (АФАР) является следующим этапом в развитии пассивной. В такой антенне каждая ячейка решетки содержит свой приемопередатчик. Их количество может превысить одну тысячу. То есть, если традиционный локатор – это отдельные антенна, приемник, передатчик, то в АФАР приемник с передатчиком и антенна «рассыпаются» на модули, каждый из которых содержит щель антенны, фазовращатель, передатчик и приемник.

Раньше, если, например, вышел из строя передатчик, самолет становился «слепым». Если в АФАР будут поражены одна-две ячейки, даже десяток, остальные продолжают работать. В этом и есть ключевое преимущество АФАР. Благодаря тысячам приемникам и передатчикам повышается надежность и чувствительность антенны, а также появляется возможность работать на нескольких частотах сразу.

Но главное, что структура АФАР позволяет РЛС параллельно решать несколько задач. Например, не только обслуживать десятки целей, но и параллельно с обзором пространства очень эффективно защищаться от помех, ставить помехи радарам противника и картографировать поверхность, получая карты высокого разрешения.

Какая РЛС будет на истребителе пятого поколения ПАК ФА?

Среди перспективных разработок – конформные АФАР, которые смогут вписываться в фюзеляж летательного аппарата, а также так называемая «умная» обшивка планера. В истребителях следующего поколения она станет как бы единым приемо-передающим локатором, предоставляющим пилоту полную информацию о происходящем вокруг самолета.

Радиолокационная система ПАК ФА состоит из перспективной АФАР X-диапазона в носовом отсеке, двух радаров бокового обзора, а также АФАР L-диапазона вдоль закрылков.

Фотонные технологии позволят расширить возможности радара – снизить массу более чем вдвое, а разрешающую способность увеличить в десятки раз. Такие БРЛС с радиооптическими фазированными антенными решетками способны делать своеобразный «рентгеновский снимок» самолетов, находящихся на удалении более 500 километров, и давать их детализированное, объемное изображение. Эта технология позволяет заглянуть внутрь объекта, узнать, какую технику он несет, сколько людей в нем находится, и даже разглядеть их лица.

 

Источник: http://interpolit.ru/blog/radary_na_bortu_kak_rabotaet_radiolokator_i_dlja_chego_nuzhna_afar/2016-03-22-6720

cezarium.com

Антирадар — Википедия

Антирадар (Россия, 1996 год) Американский полицейский ловит нарушителей ПДД Антирадар в салоне автомобиля (прикреплён к солнцезащитному козырьку)

Антирадар — активное устройство, созданное для генерирования мощных помех в определённых диапазонах радиочастот или модулирования ложного ответного сигнала, по мощности превосходящего оригинальный от пеленгующего радара. Фактически он является системой активной постановки помех — радиоэлектронного подавления, РЭП. Важно отметить, что уровень излучения у такого прибора крайне велик и очень опасен для здоровья окружающих.

Простейшие радар-детекторы и антирадары устанавливаются за ветровым стеклом, на салонном зеркале заднего вида или в салоне автомобиля, подключаются к бортовой сети (12 вольт) через прикуриватель. Более сложные несъёмные модели для установки требуют привлечения специалистов. Эти приборы классифицируются:

(Приборы с широтой срабатывания 360° позволяют обнаружить радары, контролирующие скорость под углом к направлению движения и на удаляющихся автомобилях.)

Радар-детекторы могут реагировать на помехи, создаваемые линиями электропередачи, электрическим транспортом (трамвай, троллейбус, электровозы), поэтому во многие модели встраивается защита от ложного срабатывания.

Конструктивная особенность «глушение сигнала радара» или искажение определяемой полицейским радаром скорости автомобиля-нарушителя, которая действительно делает его «антирадаром», запрещена во всех странах. Кроме того, некоторые радар-детекторы могут обнаруживать лазерные измерители скорости (лидары), а также системы VG-2 (приборы, обнаруживающие радар-детекторы).

Популярный у российской автоинспекции комплекс видеофиксации правонарушений «СТРЕЛКА-СТ» в 2010—2012 годах не определялся большинством детекторов радаров. В 2012 году в продаже было всего несколько моделей (такая функциональность была заявлена у всех производителей). Сегодня уже нет ни одного радар-детектора, который был бы не способен заблаговременно предупреждать о «СТРЕЛКА-СТ» и «СТРЕЛКА-М».

В конце лета 2017 года на просторах РФ появился новейший мобильный измеритель скорости на колесной базе, под названием «ОСКОН-СМ», который пока определяется уверенно буквально немногими приборами.

В 2014 году в продаже появились гибридные модели, или, как их ещё принято называть, «КОМБО модели», объединяющие видеорегистратор и радар-детектор на программном уровне, это решение улучшило функциональность и удобство использования обеих частей гибрида. Но ввиду наводки микросхем видеорегистратора на рупорную антенну радар-детектора дальность приёма у таких приборов, объединяющих в одном корпусе радар-детектор и видеорегистратор, существенно хуже, нежели у традиционного радар-детектора.

Законодательные особенности применения антирадаров и радар-детекторов[править | править код]

Применение радар-детекторов и антирадаров может регулироваться законодательством.

В некоторых государствах и федеральных объединениях местные законы запрещают использование лазер/радар-детекторов.

Наличие радар-детектора в автомобиле иногда позволяет избегать неприятных контактов с инспекторами дорожной службы и может положительно влиять на самодисциплину водителей, тем самым повышая безопасность движения.

Инспекторы ДПС, зная, что водители часто возят в машине радар-детектор, применяют другую тактику «охоты» на нарушителей ПДД. Полицейский прячется в «засаде» и включает свой радар только на очень короткое время, «в лоб» приближающемуся автомобилю. У водителя-нарушителя нет шансов заблаговременно снизить скорость, дабы избежать наказания. Но водитель может остановиться (дальность действия радара 300 метров) и постоять 10 минут: через этот интервал показания прибора автоматически обнуляются. Также сотрудник ГАИ вряд ли сможет доказать, что на приборе именно Ваша скорость. Можно сказать, что такой способ избежать наказания не эффективен. С недавних пор все радары ГИБДД должны быть оснащены устройствами фото- или видеофиксации, а потому сколько бы вы ни стояли, ожидая, что радар сбросит показания, ничего не выйдет. Ваше фото или даже видео будет в компьютере в полицейской машине.

Радар-детекторы (за исключением моделей с встроенным модулем GPS) неэффективны против комплексов, измеряющих время проезда автомобилем определенного расстояния, так как данная технология не требует применения радиоизлучения в сторону движущегося автомобиля.

ru.wikipedia.org

Георадар — Википедия

Материал из Википедии — свободной энциклопедии

Примеры георадаров

Георадар — радиолокатор, для которого исследуемой средой может быть земля, грунт (отсюда наиболее распространённое название), пресная вода, горы.

Современный георадар представляет собой сложный электронный прибор, компоненты которого выполняют следующие функции:

Таким образом, георадар состоит из трёх основных частей: антенной части, блока регистрации и блока управления.

Антенная часть включает передающую и приемную антенны. Под блоком регистрации понимается ноутбук или другое записывающее устройство, а роль блока управления выполняет система кабелей и оптико-электрических преобразователей.

Разработка георадаров велась в разных странах Европы, Америки, России, СССР. На основе экспериментов в натуральных условиях исследовались методы построения специализированных радиолокаторов для зондирования сравнительно тонких высокопоглощающих сред. Использование ударного возбуждения антенны позволило оценить электрические характеристики морского льда на разных частотах. Впервые радиолокационное измерение толщины морского льда проведено в 1971 году с помощью предложенного М. И. Финкельштейном в 1969 году метода синтезируемого видеоимпульсного сигнала. Этот метод применён в первом промышленном радиолокационном измерителе толщины морского льда «Аквамарин».

В 1973 году с борта самолета была доказана возможность обнаружения и измерения глубины водоносных слоев в пустынных районах Средней Азии. Использовался разработанный в РИИГА радиолокатор с ударным возбуждением антенны импульсами длительностью 50 нс с центральной частотой спектра около 65 МГц. Глубина зондирования оказалась выше 20 м при высоте полета самолета 200…400 м. Аналогичные работы были проведены для известняков в 1974 году, для мёрзлых пород — в 1975 году.

Следует указать на использование метода синтезирования апертуры в радиолокационной системе, установленной на борту космического корабля «Аполлон-17», для исследования поверхности Луны. Система была испытана в 1972 году с борта самолета над ледниками Гренландии на частоте 50 МГц при длительности импульса с линейной частотой модуляции 80 мкс (коэффициент сжатия 128).

Серийные образцы георадаров начали появляться в начале 70-х годов. В середине 80-х интерес к георадиолокации возрос в связи с очередным скачком в развитии электроники и вычислительной техники. Но, как показал опыт, это развитие оказалось недостаточным. Трудозатраты на обработку материалов не смогли окупиться в полной мере, и интерес к георадиолокации снова упал. В 90-е годы, когда произошла очередная научно-техническая революция, и персональные компьютеры стали более доступны, интерес к георадиолокации вновь возрос и не ослабел до сих пор.

С конца 90-х годов регулярно проводятся научно-исследовательские конференции, посвященные этому методу. Издаются специальные выпуски журналов.

Радары подповерхностного зондирования предназначены для изучения сред-диэлектриков по изменению диэлектрической проницаемости и/или электропроводности. Чаще всего георадары применяются для инженерно-геотехнического обследования грунтов и неразрушающего контроля (неметаллических) строительных конструкций.

Принцип действия большинства современных георадаров[1] тот же, что и у обычных импульсных радаров. В изучаемую среду излучается электромагнитная волна, которая отражается от разделов сред и различных включений. Отраженный сигнал принимается и записывается георадаром.

В настоящее время большинство серийно производимых радаров можно сгруппировать в несколько подтипов, которые отличаются основными принципами функционирования:

Для всех вышеперечисленных типов радаров имеется возможность использования одного или нескольких каналов. В этом случае условно можно разделить все эти георадары на ещё несколько классов:

  1. ↑ [1] — видео о принципах действия

ru.wikipedia.org

Как это работает — Яндекс.Радар

Как проекты попадают в Топ Радара

Яндекс.Радар автоматически выделяет 10 000 крупнейших интернет-проектов по количеству посетителей из России. Поэтому в Топ Радара могут попасть площадки с любым доменом верхнего уровня, не только .ru или .рф.

В один интернет-проект объединяются все сайты и приложения, работающие под единым названием — при этом данные об аудитории приложений учитываются только для тех проектов, которые подключили передачу данных из AppMetrica.

Откуда мы берём данные о посещаемости интернет-проектов

Рейтинг формируется на основе агрегированных обезличенных данных Яндекс.Браузера, Элементов Яндекса, Визуальных закладок, а также браузерных расширений и других продуктов Яндекса. По умолчанию данные аналитических сервисов Яндекса не учитываются.

Доля пользователей Яндекса в аудитории каждого интернет-проекта разная. Поэтому для расчёта посещаемости каждого проекта с помощью машинного обучения создаётся собственная статистическая модель. Она определяет диапазон, в котором с высокой вероятностью находится реальное количество посетителей ресурса за выбранный период отчёта.

Рядом с интернет-проектом в рейтинге указывается его минимальная оценка посещаемости, а по наведению курсора на это число показывается верхняя граница диапазона. Минимальная и максимальная посещаемость — оценочные показатели, поэтому их значения округлены до трёх значащих цифр. Проекты ранжируются по нижней границе диапазона посещаемости. Подробнее о ранжировании

Для ряда крупных проектов указан не диапазон, а наиболее вероятное значение посещаемости — так как данных по ним достаточно для более точного подсчёта. К таким проектам относятся Mail.ru, ВКонтакте, Одноклассники, Facebook, Instagram, Google и Youtube.

ВКонтакте, Одноклассники, YouTube и Instagram учитываются в рейтинге отдельно от интернет-компаний, которым они принадлежат — Mail.ru, Google и Facebook соответственно. Это связано с тем, что домены этих трёх проектов отличаются от доменов компаний-владельцев. Аналогичным образом в посещаемости портала Yandex.ru не учитываются проекты Auto.ru, Kinopoisk.ru и Edadeal.ru.

Для тех интернет-проектов, рядом с которыми отсутствует метка «Примерная оценка», указаны не приблизительные, а точные значения посещаемости. Эти проекты дали согласие на использование в Топе данных из аналитических продуктов Яндекса, поэтому для них посещаемость рассчитывается не по статистической модели, а по данным Метрики и AppMetrica.

Подключить к Топу Радара статистику из систем аналитики можно по ссылке напротив интернет-проекта. Эти данные начнут учитываться в рейтинге примерно через два дня после их подключения. Если интернет-проект отключит передачу данных, они также перестанут поступать на Радар спустя два дня — при этом показатели за прошлые месяцы не будут пересчитаны.

Данные Метрики позволяют не только рассчитывать точные показатели посещаемости проекта, но и дополнять его статистику в Топе новыми показателями. У проектов, подключивших передачу данных из Метрики, будут заполнены колонки «среднее время» и «дневная аудитория». Помимо этого, такие проекты будут показываться в рейтингах по характеристикам аудитории — это регион России, тип устройства, уровень дохода, пол и возраст.

С помощью данных из AppMetrica можно ещё точнее рассчитывать все показатели посещаемости, так как в них будут учтены пользователи мобильного приложения, которые не заходят на сайт. Помимо этого, для интернет-проектов c данными AppMetrica показывается доля пользователей приложения в совокупной аудитории.

Что означают показатели посещаемости

Посещаемость любого интернет-проекта определяется двумя способами: классическим (по анонимным идентификаторам браузеров) и с помощью кросс-девайсной склейки.

При классическом методе подсчёта число уникальных посетителей сайта равно числу уникальных браузеров, в которых его открывали — это самый распространенный метод учёта аудитории в интернете. Например, если один и тот же пользователь открывал сайт в Opera и Chrome c десктопа, а потом в Chrome со смартфона, в статистике будет учтено три разных посетителя.

Кросс-девайсная склейка позволяет «узнавать» посетителя на всех его браузерах и устройствах. В примере выше Радар учтёт одного посетителя — независимо от того, используются смоделированные данные или точная статистика. Поэтому при кросс-девайсной склейке количество посетителей сайта не завышается. Склейку анонимных идентификаторов браузеров и устройств одного и того же пользователя обеспечивает технология «Крипта».

Данные счётчиков Метрики, которые используются для расчёта посещаемости проектов в Топе, стандартизируются: это нужно, чтобы ресурсы находились в равных условиях для сравнения. Из-за стандартизации данных посещаемость в Топе и в отчётах Метрики может отличаться. Вот основные причины отличий:

— Метрика фиксирует визиты на сайт из любых регионов, а для расчёта позиций в Топе учитывается только российский трафик.
— Независимо от настроек конкретного счётчика Метрики, к данным для расчёта рейтинга применяется фильтрация роботов по строгим правилам и по поведению, а тайм-аут визита устанавливается на уровне 30 минут.
— Если один и тот же счётчик установлен на разных сайтах, для расчёта позиций конкретного проекта будут использоваться данные только по его домену.
— Если площадка передает статистику из AppMetrica, в показателях посещаемости в рейтинге будут также учтены пользователи мобильного приложения, которые не заходят на сайт.

Как интернет-проекты ранжируются в Топе Радара

Для определения места в рейтинге используются данные о кросс-девайсной аудитории. Проекты, для которых количество посетителей рассчитывается по статистической модели, ранжируются по нижней границе посещаемости – за исключением ряда крупных ресурсов, для которых указываются не диапазоны, а только одно наиболее вероятное значение посещаемости. Подробнее — в разделе Источники данных

В рейтинге могут оказаться несколько ресурсов, для которых будет указана одинаковая примерная посещаемость. Это возможно, так как границы интервала посещаемости указываются с округлением — потому что они представляют собой оценочные, а не точные значения. Сайты, у которых минимальная посещаемость совпадает, расставляются по алфавиту — например, siteforyandex.ru окажется выше yetanothersite.ru.

Стрелки «вверх» и «вниз» рядом с названиями ресурсов отражают изменения позиций в сравнении с предыдущим месяцем.

Что означают тематики и типы

Тип — это функциональное назначение ресурса, а тематика — то, чему он посвящён. Отдельный рейтинг составляется для каждого типа, тематики и их комбинации. Например, интернет-магазин, торгующий кормом для кошек, может показываться в следующих рейтингах: ресурсы о домашних животных, ресурсы о кошках, интернет-магазины, интернет-магазины с товарами для любых домашних животных, интернет-магазины с товарами для кошек. У ресурса может быть несколько разных тематик и только один тип.

Типы и тематики определяются автоматически с помощью машинного обучения. Скорректировать тип и тематику сайта можно по запросу. Для этого нужно заполнить форму обратной связи, кликнув по ссылке рядом с проектом в рейтинге. Ссылка расположена за символом «Настройка» — ⋮ (три точки по вертикали).

Описание типов

Агрегаторы

Это каталоги различных объявлений — например, о поиске работы, купле-продаже товаров и услуг, недвижимости, автомобилей. К этому типу относятся сайты, на которых пользователи сами размещают объявления (например, Avito), а также сайты, автоматически собирающие объявления или предложения (Яндекс.Маркет, Booking.сom, AviaSales). В этот тип также входят агрегаторы новостей, которые не публикуют собственный контент: например, Яндекс.Новости и MediaMetrics.

Видео

Это ресурсы, позволяющие загружать и/или просматривать видео-контент — например, онлайн-кинотеарты. Некоторые сайты с видео-контентом не относятся к этому типу. Это сайты телеканалов — они отнесены к «Представительствам бизнесов и организаций» — и сайты с эротическим или порнографическим контентом, которые вынесены в отдельный тип.

Интернет-магазины

Ресурсы, позволяющие заказать или купить товары. К ним не относятся агрегаторы предложений разных магазинов (например, Яндекс.Маркет) и системы размещения объявлений (например, Avito) – такие ресурсы классифицируются как «Агрегаторы». Также к интернет-магазинам не относятся сайты, предлагающие «офлайновые» услуги (продажу туров, уборку квартир и пр.) — это «Представительства бизнесов и организаций».

Контентные проекты

Ресурсы с контентом, который упорядочен по хронологии или по разделам. Формат контента может быть любым — статьи, картинки, wiki-проекты. В этот тип не входят каталоги ссылок на материалы других сайтов (это «Агрегаторы»), сайты с контентом, который быстро устаревает (это «Новости»), сайты, на которых контент могут создавать все пользователи (это «Сообщества»), а также сайты с видео, которые относятся к одноименному типу.

Новости

Новостным считается контент, который упорядочен хронологически и остаётся актуальным не больше нескольких дней. В этот тип входят как новостные сайты без определённой тематики, так и сайты, посвящённые чему-то одному — например, политике или финансам. При этом сайты с новостями на узкоспециализированную тему (например, о конкретной компьютерной игре) относятся к другим типам — «Контентные проекты» или «Сообщества». В тип «Новости» также не входят агрегаторы (например, Яндекс.Новости).

Онлайн-игры

Сайты, на которых можно играть онлайн в одну или несколько игр. К этому типу также относятся официальные сайты игр, с которых можно скачать приложение — а сама игра происходит в онлайне (например, Worldoftanks.ru). К этому типу не относятся сайты издателей игр, например Wargaming.net — это «Представительства бизнесов и организаций».

Порно, эротика

Проекты с любым подобным контентом — видео, картинки, тексты и т.д.

Портал

К этому типу относятся глобальные поисковые системы — Яндекс, Google, Mail.ru и другие.

Представительства бизнесов и организаций

К этому типу относятся ресурсы, на которых пользователи могут оформить заказ на услугу в офлайне. Например, в этот тип попадают туроператоры, банки, интернет-провайдеры. Также к этому типу относятся сайты по продаже товаров, оформить покупку которых можно только офлайн — например, сайты по продаже автомобилей или недвижимости. Сюда же попадают сайты брендов или производителей и официальные сайты некоммерческих организаций.

Сервисы

Ресурсы для решения конкретных задач. Например, это могут быть сервисы, позволяющие слушать музыку онлайн, хранить файлы, изучать карты и прогноз погоды, создавать и редактировать изображения.

Сообщества

К этому типу относятся сообщества, посвящённые конкретной тематике. Это могут быть социальные сети, форумы, блоговые платформы, сайты вопросов-ответов, сайты с отзывами и другие подобные ресурсы. К этому типу не относятся сайты, для которых большую часть контента создают администраторы сайта, профессиональные писатели или другой ограниченный круг авторов, а не сами пользователи — это «Контентые проекты».

Социальные сети

Социальные сети без определённой тематики, такие как ВКонтакте и Facebook. В этот тип не входят социальные сети, посвящённые узкой тематике (например, аниме или домашним животным) — это «Сообщества».

Ставки

Букмекерские ресурсы, позволяющие сделать ставку на спортивные мероприятия или любые другие события.

Как часто обновляется Топ Радара

Данные о посещаемости интернет-проектов обрабатываются Радаром ежедневно, а в рейтинге отражаются с задержкой в два дня. Статистика за неполный текущий месяц начинает показываться с 10-го числа — например, до 10-го июня в рейтинге будет статистика за май.

Как рассчитываются показатели «Среднее время», «Доля пользователей приложения» и «Дневная аудитория»

«Среднее время» отражает среднее количество минут, которое кросс-девайсные посетители сайта провели на нём за текущий месяц. «Дневная аудитория» — это среднее количество кросс-девайсных посетителей за день в текущем месяце.

Если площадка подключила данные из AppMetrica, в расчёт среднего времени войдёт и время в приложении. Статистика из AppMetrica также позволит повысить точность подсчёта дневной аудитории и показателей посещаемости за месяц — так как в этих метриках будут учтены пользователи мобильного приложения, которые не заходят на сайт.

Доля пользователей приложения показывает, какой процент они составляют в совокупной кросс-девайсной аудитории площадки — эта метрика рассчитывается только при наличии данных AppMetrica.

Как определяется регион, тип устройства и демографические характеристики аудитории

В срезах по региону, типу устройства и демографии показываются только те интернет-проекты, которые подключили передачу данных Метрики.

Регион вычисляется по IP-адресам посетителей сайтов, тип устройства — по строке User Agent. Демографические характеристики определяются с помощью технологии «Крипта», при этом все данные анонимны и не позволяют идентифицировать конкретного пользователя.

Частые вопросы

Как добавить свой ресурс в рейтинг?

В Топ автоматически отбираются 10 000 крупнейших интернет-проектов по количеству посетителей из России. Ресурс попадёт в рейтинг автоматически, как только он войдёт в их число.

Мой ресурс попал не в ту тематику / тип. Как это исправить?

Заполните форму обратной связи, нажав на ссылку «Изменить тематику или тип». Ссылка расположена рядом с вашим проектом в рейтинге, за символом «Настройка» — ⋮ (три точки по вертикали).

Что такое кросс-девайсные посетители?В классических системах веб-аналитики термин «посетитель» означает уникальный браузер, в котором открывали сайт. Если один и тот же пользователь заходил на сайт из нескольких разных браузеров (не важно, на одном устройстве или на разных), система веб-аналитики зафиксирует несколько разных посетителей.

А при расчёте количества кросс-девайсных посетителей система «узнаёт» пользователя на всех его устройствах и во всех браузерах. Если один и тот же пользователь заходил на сайт с нескольких устройств, в колонке «Посетители, кросс-девайс» будет учтён только один посетитель.

Таким образом, количество кросс-девайсных посетителей представляет собой более реалистичную оценку аудитории ресурса. За расчёт кросс-девайсной посещаемости проектов в рейтинге отвечает технология «Крипта».

Мне кажется, что количество кросс-девайсных посетителей моего ресурса заниженоЧисло кросс-девайсных посетителей всегда будет меньше количества посетителей в одной из систем классической веб-аналитики, к которым относятся Яндекс.Метрика, Google Analytics и другие. При этом кросс-девайсная посещаемость будет точнее отражать реальную аудиторию ресурса.

В Метрике, Google Analytics и большинстве других систем посетители учитываются по идентификаторам браузеров. Из-за этого аудитория ресурса оказывается завышенной: если один и тот же пользователь открывал сайт в нескольких разных браузерах (неважно, на одном и том же устройстве или на разных), он будет учтён как несколько разных посетителей — хотя на самом деле сайт посещал один и тот же человек.

А при расчёте количества кросс-девайсных посетителей система «узнаёт» пользователя на всех его устройствах и во всех браузерах. Если один и тот же пользователь заходил на сайт с нескольких устройств, в колонке «Посетители, кросс-девайс» будет учтён только один посетитель. За расчёт кросс-девайсной посещаемости проектов в рейтинге отвечает технология «Крипта».

Таким образом, кросс-девайсная аудитория всегда будет меньше, чем количество посетителей в системах веб-аналитики. При этом число кросс-девайсных посетителей гораздо точнее отражает реальный размер аудитории ресурса.

Если я подключу передачу данных Метрики, какая статистика по моему ресурсу станет общедоступной?Для вашего ресурса будет указано количество посетителей из России. При этом проект также будет показан в рейтингах по региону, типу устройства, полу, возрасту и доходу аудитории. Эти рейтинги становятся доступны при выборе фильтра, который оставляет в отчёте только проекты, передающие точные данные о посещаемости. Например, для конкретного ресурса можно будет посмотреть количество посетителей—мужчин из Московской области.

Также для ресурса будет показано среднее количество минут, которое кросс-девайсные посетители ресурса провели на нем за выбранный период, и среднее количество кросс-девайсных посетителей за день.

Можно ли отключить передачу данных Метрики и/или AppMetrica?

Конечно, это можно сделать в любое время. Статистика перестанет поступать в Топ примерно через двое суток после того, как вы отключите соответствующую опцию в Вебмастере. Обратите внимание: когда вы отключите передачу данных, в Топ перестанет поступать новая статистика – но данные за прошлые периоды не будут пересчитаны.

Я подключил передачу данных Метрики, но у моего ресурса осталась метка «Примерная оценка»

Данные Метрики начинают учитываться в рейтинге примерно через два дня после того, как в Вебмастере была включена соответствующая опция.

Обязательно ли подключать данные AppMetrica, если я уже подключил передачу данных Метрики?

Подключать данные AppMetrica нужно только для того, чтобы для вашего проекта была указана доля аудитории приложения, а показатели посещаемости рассчитывались точнее.

Я подключил передачу данных Метрики, но в Топ начали передаваться какие-то другие данные — в отчётах Метрики я вижу другие цифры. Почему?Для начала важно понять, какие именно показатели отличаются.
  1. Сравнивать колонку «Визиты» в Метрике с количеством посетителей в Топе не стоит, это разные показатели. Узнать подробнее о том, чем визиты отличаются от посетителей, можно в Помощи Метрики.
  2. Количество кросс-девайсных посетителей не должно соответствовать количеству посетителей в Метрике, потому что они учитываются по-другому.
  3. Количество «обычных» посетителей во второй колонке рейтинга может немного отличаться от количества посетителей, которое вы видите в Метрике. Это связано с тем, что данные Метрики стандартизируются, чтобы все проекты были в равных условиях для сравнения.
Вот основные причины, по которым количество посетителей в Метрике может отличаться от значения в колонке «Посетители» в Топе:

Чтобы рассчитывать рыночные доли поисковых систем, браузеров, типов устройств и операционных систем, мы отслеживаем, какой процент переходов на сайты они обеспечили в общем трафике региона. Для этого мы анализируем сводные данные по счетчикам Яндекс.Метрики. Отчеты по технологиям и поисковым системам доступны для четырех стран — России, Беларуси, Казахстана и Турции.

Статистику по долям поисковых систем и браузеров можно посмотреть в разбивке по операционным системам и по типам устройств: например, сравнить доли браузера Chrome Mobile на iOS и Android или на планшетах и смартфонах.

Источник данных

Для расчётов используется обобщённая статистика переходов на все сайты со счётчиком Яндекс.Метрики. Это ведущая система веб-аналитики в России, которая работает с 2009 года и по состоянию на август 2018 года регистрирует 78,88%* трафика в доменной зоне .ru. По данным аналитического центра W3Techs, Яндекс.Метрика занимает третье место в мире по количеству доменов, на которых установлен её счётчик.

*Системы веб-аналитики по объёму трафика, регистрируемого в доменной зоне .ru

по данным Яндекса за август 2018

Доля доменов со счётчиком Яндекс.Метрики

по данным W3Techs на 25.09.2018

Методология

Чтобы обеспечить репрезентативную выборку доменов для анализа, изо всех отчётов Яндекс.Радара исключены визиты на собственные сайты Яндекса. Помимо этого, мы корректируем погрешности измерений, которые возникают из-за особенностей работы некоторых технологических решений для веба. Например, из-за массового перехода на https-шифрование мы ввели поправку на отсутствие реферера: в некоторых старых браузерах он теряется при переходах с https на http.

Объём трафика измеряется в визитах. Регион вычисляется по IP-адресам посетителей сайтов, дата и время визитов — по часовому поясу счётчика, а браузер, операционная система и тип устройства — по строке User Agent. Для определения поисковой системы используются те же принципы, что и в одноимённом отчёте Яндекс.Метрики.

Что такое визитПоследовательность действий одного посетителя на сайте со счётчиком Яндекс.Метрики. Учитываются просмотры страниц, переходы по внешним ссылкам, загрузки файлов и другие типы взаимодействий. Визит начинается с перехода на сайт и заканчивается, когда посетитель не совершает никаких действий в течение определённого времени. По умолчанию это 30 минут, но владельцы счётчиков могут задавать собственное время неактивности. Подробнее — в справочном центре Яндекс.Метрики.

В отчётах по поисковым системам и браузерам представлена статистика за период с 1 января 2015 года, в отчётах по операционным системам и типам устройств — с 1 апреля 2015 года. Для анализа можно выбирать любые интервалы дат кроме последней недели.

Обратная связь

Мы будем рады ответить на ваши вопросы:
форма обратной связи

radar.yandex.ru

«Как работают и какие нарушения фиксируют видеокамеры ГИБДД?» – Яндекс.Кью

Теоретически такие камеры должны регистрировать все дорожные нарушения, хотя на практике они фиксируют лишь часть из них. Кстати, список автодорожных нарушений, которые могут быть засняты такими приборами, законодательно до сих пор не определён.

Автоматические видеокамеры бывают:

переносными;

стационарными;

мобильными.

Переносные регистраторы требуют ежедневной установки и настройки. Практика показывает, что они способны зафиксировать только превышение водителем скорости.

Стационарные камеры очень удобны и практичны. Они устанавливаются в определённом месте и настраиваются один раз. Такие системы способны заснять:

превышение скорости;

выезд на стоп-линию;

маневрирование на запрещающий сигнал светофора;

выезд авто на перекрёсток при заторе;

выезд ТС на встречную полосу;

въезд под запрещающим знаком;

выезд на тротуар;

выезд на предназначенную для маршрутных ТС полосу;

нарушение дорожной разметки;

движение грузовиков за рамками второй полосы на автомагистралях;

поворот из второго ряда;

невключённый ближний свет фар;

нарушение правил оплаты проезда для тяжёлых грузовиков;

игнорирование пешеходов на «зебре».

На дорогах РФ может быть установлено несколько видов таких камер. Далее рассмотрим самые распространённые марки:

Видеоустройство «Стрелка» распознаёт ТС, которые запрограммированы в его памяти. В идеальных условиях прибор видит цель за 400-500 метров, причём не одну, а несколько десятков сразу. За это время фиксируется правонарушение, затем видеокамера отслеживает машину. Автоматика распознаёт номер и фотографирует его за 50 м до места базирования системы. Радар, находящийся внутри устройства, определяет скорость движения, координаты и номер автомобиля одновременно.

Устройство «Автодория» высчитывает среднюю скорость автомобиля, движущегося на расстоянии от 100 м до 2-3 километров. Радара здесь нет, есть только фотокамеры, фиксирующие авто в начале и в конце отрезка пути.

Стационарный комплекс «АвтоУраган-ВСМ» способен зафиксировать 16 видов нарушений ПДД. Этот прибор обходится также без радара, здесь имеется только широкоугольная видеокамера, что не мешает определять скорость автомобилей с погрешностью всего 2 км/ч. Фиксируется также время проезда машины.

Устройство «Вокорд» также не использует радар. Система измеряет среднюю скорость только объективом, делая несколько кадров подряд.

Камера «Арена» бывает стационарной и передвижной. Её диапазон считываемой скорости составляет от 20 до 250 км/ч. Камера улавливает нарушителя в радиусе 8 метров. Способна полноценно работать в тёмное время суток.

yandex.ru

Лидар — Википедия

Лида́р (транслитерация LIDAR англ. Light Detection and Ranging «обнаружение и определение дальности с помощью света») — технология получения и обработки информации об удалённых объектах с помощью активных оптических систем, использующих явления поглощения и рассеяния света в оптически прозрачных средах.

Лидар, произведённый компанией Leica, используемый для сканирования зданий, скальных образований и т. д. с целью создания 3D-моделей.

Лидар как прибор представляет собой, как минимум, активный дальномер оптического диапазона.

Устоявшийся перевод LIDAR как «лазерный радар» не вполне корректен, так как в системах ближнего радиуса действия (например, предназначенных для работы в помещениях), главные свойства лазера: когерентность, высокие плотность и мгновенная мощность излучения — не востребованы; излучателями света в таких системах могут служить обычные светодиоды. Однако в основных сферах применения технологии (метеорология, геодезия и картография) с радиусами действия от сотен метров до сотен километров используются только лазеры.

Аббревиатура LIDAR впервые появилась в работе Миддлтона и Спилхауса «Метеорологические инструменты» 1953 года, задолго до изобретения лазеров.[1] Первые лидары использовали в качестве источников света обычные или импульсные лампы со скоростными затворами, формировавшими короткий импульс.[2]

США[править | править код]

В 1963 году в США начались полевые испытания носимого лазерного дальномера XM-23 с мощностью излучения 2,5 Вт и диапазоном измеряемых расстояний 200—9995 м.[3]. XM-23 был изначально несекретным образцом и стал базовым прибором для гражданских исследователей 1960-х годов.[4] К концу 1960-х годов лазерные дальномеры стали стандартным оборудованием новых танков США (первым образцом, спроектированным с применением лазерных дальномеров, стал M551 Шеридан, запущенный в серию в 1967). Гражданские применения лазерных дальномеров были ограничены лишь высокой стоимостью интегральных схем того времени.

Тогда же, в первой половине 1960-х годов, начались опыты по применению лидара с лазерными излучателями для исследования атмосферы[5].

В 1969 году лазерный дальномер и мишень, установленная на Аполлоне-11, применялся для измерения расстояния от Земли до Луны. Четыре мишени, доставленные на Луну тремя «Аполлонами» и «Луноходом-2», и по сей день используются для наблюдения за орбитой Луны[6][7].

В течение 1970-х годов, с одной стороны, отлаживалась технология лазерных дальномеров и компактных полупроводниковых лазеров, а с другой — были начаты исследования рассеяния лазерного луча в атмосфере. К началу 1980-х годов эти исследования стали настолько известными в академических кругах США, что аббревиатура LIDAR стала именем нарицательным — lidar, что зафиксировал словарь Уэбстера 1985 года.[2] В те же годы лазерные дальномеры достигли стадии зрелой технологии (по крайней мере, в военных приложениях) и выделились в отдельную от лидаров отрасль техники[8].

СССР[править | править код]

Эксперименты по лазерной локации Луны в СССР начались в 1963 году, а с 1973 года велись систематические наблюдения всех пяти расположенных к тому времени на Луне уголковых отражателей («Лунохода-1», «Лунохода-2», «Аполлона-11», «Аполлона-14», «Аполлона-15»)[9]:263,267,272. Для лазерной локации искусственных спутников Земли в СССР были запущены спутники с уголковыми отражателями на борту: «Интеркосмос-17» (1977), «Интеркосмос-Болгария-1300» (советско-болгарский, 1981), «Метеор-3» (1985), использовался разработанный советскими учёными лазерный дальномер «Крым»[10]:321,323.

В СССР существовало два семейства лидарных метеорологических приборов, предназначенных для использования на аэродромах (в обоих семействах в качестве источника зондирующего светового потока использовались импульсные лампы):


В отличие от радиоволн, эффективно отражающихся только от достаточно крупных металлических целей, световые волны подвержены рассеянию в любых средах, в том числе в воздухе, поэтому возможно не только определять расстояние до непрозрачных (отражающих свет) дискретных целей, но и фиксировать интенсивность рассеивания света в прозрачных средах. Возвращающийся отражённый сигнал проходит через ту же рассеивающую среду, что и луч от источника, подвергается вторичному рассеиванию, поэтому восстановление действительных параметров распределённой оптической среды — достаточно сложная задача, решаемая как аналитическими, так и эвристическими методами.

Основные различия в конструкциях и принципах действия современных лидаров заключаются в модулях формирования развертки. Развертка может формироваться как механическими методами (с помощью вращающихся зеркал или с помощью движения микроэлектромеханических систем), так и с помощью фазированной антенной решетки[11].

Излучатель[править | править код]

Длины волн, излучаемые наиболее распространёнными лазерами. Шкала в микрометрах

В абсолютном большинстве конструкций излучателем служит лазер, формирующий короткие импульсы света высокой мгновенной мощности. Периодичность следования импульсов или модулирующая частота выбираются так, чтобы пауза между двумя последовательными импульсами была не меньше, чем время отклика от обнаружимых целей (которые могут физически находиться дальше, чем расчётный радиус действия прибора). Выбор длины волны зависит от функции лазера и требований к безопасности и скрытности прибора; наиболее часто применяются Nd:YAG-лазеры и длины волн (в нанометрах):

Также возможно использование (см. Промышленные и сервисные роботы) вместо коротких импульсов непрерывной амплитудной модуляции излучения переменным напряжением.

Системы формирования сканирующего паттерна[править | править код]

Большинство современных лидаров используют цилиндрическую развертку. Этот тип развертки наиболее просто формируется и прост в дальнейшей обработке. Однако, у него есть недостатки. Например, при использовании цилиндрической развертки есть вероятность пропустить узкие горизонтальные объекты (такие как шлагбаум). Чаще всего эта проблема решается применением дополнительного лидара с цилиндрической разверткой, но ориентированного перпендикулярно первому лидару.

Помимо цилиндрической развертки существуют лидары с разверткой "розетка" (англ. "Rosette scanning pattern"). Формирование данной развертки происходит сложнее, чем формирование цилиндрической развертки, однако лидары с разверткой "розетка" не испытывают проблем, описанных выше.

Сканирующая оптика[править | править код]
Два чёрных цилиндра, вынесенные перед бампером — сканирующие лидары беспилотного автомобиля

Простейшие атмосферные лидарные системы не имеют средств наведения и направлены вертикально в зенит.

Для сканирования горизонта в одной плоскости применяются простые сканирующие головки. В них неподвижные излучатель и приёмник также направлены в зенит; под углом 45° к горизонту и линии излучения установлено зеркало, вращающееся вокруг оси излучения. В авиационных установках, где надо сканировать полосу, перпендикулярную направлению полёта самолёта-носителя, ось излучения — горизонтальна. Для синхронизации мотора, вращающего зеркало, и средств обработки принимаемого сигнала используются точные датчики положения ротора, а также неподвижные реперные риски, наносимые на прозрачный кожух сканирующей головки.

Сканирование в двух плоскостях добавляет к этой схеме механизм, поворачивающий зеркало на фиксированный угол с каждым оборотом головки — так формируется цилиндрическая развёртка окружающего мира. При наличии достаточной вычислительной мощности можно использовать жёстко закреплённое зеркало и пучок расходящихся лучей — в такой конструкции один «кадр» формируется за один оборот головки.

Сканирование с помощью MEMS[править | править код]

Производить сканирование можно также и с помощью микроэлектромеханических систем. Такие системы позволяют значительно сократить габариты и повысить надежность изделий.

Активная фазированная антенная решетка[править | править код]

Активная фазированная антенная решетка формирует лазерный луч множеством передающих модулей, каждый из которых генерирует излучение со своими параметрами. Таким образом можно управлять направлением луча. Применение ФАР в лидарах позволяет избавиться от подвижных частей и таким образом продлить срок жизни изделию.

Приём и обработка сигнала[править | править код]

Важную роль играет динамический диапазон приёмного тракта. Например, приёмный тракт новейшей (2006 год) подсистемы машинного зрения MuCAR-3 с динамическим диапазоном 1:106 обеспечивает эффективный радиус действия от 2 до 120 м (всего 1:60). Чтобы избежать перегрузки приёмника интенсивной засветкой от рассеивания в «ближней зоне», в системах дальнего радиуса действия применяют высокоскоростные механические затворы, физически блокирующие приёмный оптический канал. В устройствах ближнего радиуса со временем отклика менее микросекунды такой возможности нет.

Современное состояние и перспективы[править | править код]

Исследования атмосферы[править | править код]

Исследования атмосферы стационарными лидарами является наиболее массовой отраслью применения технологии. В мире развёрнуто несколько постоянно действующих исследовательских сетей (межгосударственных и университетских), наблюдающих за атмосферными явлениями.

Измерение высоты нижней границы облаков. В России выпускаются светолокаторы ДВО-2 [12] (с импульсной лампой в качестве источника света), лазерные светолокаторы ДОЛ-2.[13] и лазерный облакомер для измерения высоты нижней границы облаков и вертикальной видимости [14] Также широко используются лазерные светолокаторы CL31 финского производства.[15]

Измерение дальности видимости. В России производятся трансмиссометры ФИ-3 [16], используются также финские трансмиссометры LT31.[17] В обоих приборах источником излучения является полупроводниковый светодиод.

Измерение скорости и направления воздушных потоков. Теоретическое обоснование применения наземного доплеровского лидара для таких измерений было дано ещё в 1980-е годы.[18] Первые практические разработки использовали неподвижные оптические системы с лучом, направленным вертикально в зенит; в 1990-е годы были предложены технологии, позволяющие доплеровским лидарам сканировать широкий угол обзора.[19] В 2001 Alcatel предложил размещение лидаров на борту спутников, так, что «созвездие» спутников на орбите способно отслеживать движение воздушных масс в рамках целого континента, а в потенциале — на Земле в целом.[20] Лидары активно используются для наблюдений за загрязнением атмосферы. Особый класс дифференциальных лидаров (differential absorption lidar, DIAL), излучающих одновременно свет с разной длиной волны, способен эффективно определять концентрацию отдельных газов, оптические показатели которых зависят от длины волны.

Измерение температуры атмосферы. Разработано и реализовано на практике несколько основных методов измерения профилей температуры.

В первом методе используется резонансное рассеяние на атомах щелочных металлов, в частности, натрия, калия, а также железа[21][22][23]. Облака атомов металлов находятся на высоте 85 — 100 км. Температура измеряется по доплеровскому уширению резонансных линий с помощью зондирования узкополосным подстраиваемым лазером (используются жидкостные лазеры с активным веществом в виде раствора органического красителя). Первые измерения были осуществлены с помощью искусственных натриевых облаков, забрасываемых в атмосферу ракетами. Несмотря на то, что метод ограничен диапазоном высот, на которых присутствуют атомы металла, рассеянный сигнал оказывается относительно большим, и это дает возможность измерять температуру с точностью до 1.5 ˚К[24].

Второй метод — метод рэлеевского рассеяния (Rayleigh lidar), основан на нерезонансном рассеянии света на молекулах воздуха[22][25][26]. Впервые он был применен в 1953 году в опытах с прожекторным зондированием атмосферы[27]. Суть метода заключается в следующем. Если отсутствует аэрозольное рассеяние, то мощность обратно рассеянного сигнала прямо пропорциональна плотности воздуха, из которой можно рассчитать температуру. Разрежение воздуха с высотой позволяет использовать метод рэлеевского рассеяния на высотах не более 90 км. Нижняя граница высоты измерения (около 20-30 км) обусловлена присутствием в граничном слое большого количества аэрозоля, который значительно увеличивает рассеяние, но практически не влияет на плотность воздуха.

Третий метод основан на вращательном рамановском (комбинационном) рассеянии молекулами воздуха (Raman lidar)[22][25]. Когда температура увеличивается, интенсивность переходов с большими квантовыми числами возрастает, в то время как интенсивность линий вращательного рамановского спектра, соответствующих маленьким квантовым числам, уменьшается. Переходы с большими квантовыми числами соответствуют линиям рамановского спектра, расположенным дальше от центральной частоты. Температура определяется при использовании измерений в двух областях спектра с различной температурной зависимостью. Максимальная высота зондирования составляет около 30 км, погрешность измерения менее 1 ˚К до высоты 10 км[28]. Так как в приемнике линия упругого рассеяния подавляется, то измерения можно проводить и в присутствии значительных концентраций аэрозолей.

Измерение температуры может проводиться так же с помощью DIAL лидара[22], но этот метод не получил большого распространения.

Помимо научных целей и метеорологических наблюдений, активно испытываются комплексные системы мониторинга воздушных потоков в районах аэропортов. Среди практических предложений последних лет — системы автоматического управления ветрогенераторами, использующие лидары для определения силы и направления ветра.[29]

Раннее оповещение о лесных пожарах. Лидар, размещённый на возвышенности (на холме или на мачте) и сканирующий горизонт, способен различать аномалии в воздухе, порождённые очагами пожаров. В отличие от пассивных инфракрасных систем, распознающих только тепловые аномалии, лидар выявляет дымы по аномалиям, порождаемым частицами горения, изменению химического состава и прозрачности воздуха и т. п. Технология с радиусом обнаружения дымов в 20 км была впервые заявлена в 1990,[30] активные поиски оптимальных конфигураций систем ведутся по сей день.[31]

Исследования Земли[править | править код]

Вместо установки лидара на земле, где принимаемый отражённый свет будет зашумлён из-за рассеяния в загрязнённых, нижних слоях атмосферы, «атмосферный» лидар может быть поднят в воздух или на орбиту, что существенно улучшает соотношение сигнал-шум и эффективный радиус действия системы. Первый полноценный орбитальный лидар был выведен на орбиту NASA в декабре 1994 года в рамках программы LITE (Lidar In-Space Technology Experiment).[32][33] Двухтонный лидар LITE с метровым зеркальным телескопом, поднятый на высоту 260 км, «рисовал» на земле размытое пятно диаметром 300 м, что было явно недостаточно для эффективного отображения рельефа, и был исключительно «атмосферным».

Особо ценным оказался опыт верификации данных космической съёмки с использованием синхронных данных более 60 наземных лидаров по всему миру.[34]

Первый европейский орбитальный лидар (проект ALADIN) планируется к запуску в 2014 году.[35]

Космическая геодезия. Современные космические проекты разделились на два направления — совершенствование «атмосферных» систем (см. вышеупомянутый проект Alcatel) и геодезические лидары, способные сканировать рельеф земной поверхности с приемлемой разрешающей способностью. Лидары могут применяться как на орбите Земли, так и на орбитах других планет, практический пример тому — бортовой лидар АМС Марс Глобал Сервейор.

Измерения лунной топографии, выполненные с космического аппарата Клементина.

Авиационная геодезия, топография и археология. Национальная океанографическая служба США (NOAA) систематически применяет авиационные лидары для топографической съёмки морского побережья. Сканирующий лидар NOAA имеет разрешение по вертикали 15 см и полосу сканирования (при штатной высоте полёта) 300 м. Привязка к абсолютной высоте производится «от уровня моря» (с поправкой на приливы), к географическим координатам — по сигналам GPS.[36] Географическая служба США (USGS) проводит аналогичные топографической съёмки в Антарктиде, данные съёмок USGS находятся в открытом доступе.[37] В 2007 году USGS начал программу по встраиванию данных лидарной съёмки в национальную базу топографических данных США.[38]

Особое направление, применяемое на практике в сейсмоопасных районах США — дифференциальное измерение высот с целью выявления локальных подвижек земных масс в районе разломов. Ещё в 1996 с помощью лидара была открыта неизвестная ранее зона разлома возле Сиэтла.[39]

Мониторинг лесов и биомассы. Космические (например, GLAS - Geoscience Laser Altimeter System) и авиационные лидары позволяют определить высоту растительности, в частности леса. Таким образом, появляется возможность уточнить распространение лесов, вычислить их параметры (фитомасса, запас древесины) и осуществлять мониторинг за динамикой лесного покрова (например, сведение лесов в тропиках).

Воздушное лазерное сканирование местности позволяет получать данные о реальной поверхности земли исключая искажения от лесных массивов, строении и т. д., также позволяет выявлять неглубоко расположенные археологические объекты культурного слоя[40][41][42]. К примеру, таким образом были обнаружены руины бывших обширных жилых кварталов в джунглях вокруг храма Ангкор-Ват занимающие более 1 000 км²[43].

Строительство и горное дело[править | править код]

«Строительный» лидар, предназначенный для дистанционных трёхмерных обмеров зданий. Видны вращающаяся головка, обеспечивающая сканирование по горизонтали, и наклонное зеркало, сканирующее в вертикальной плоскости

Лидары, сканирующие неподвижные объекты (здания, городской ландшафт, открытые горные выработки), относительно дёшевы: так как объект неподвижен, то особого быстродействия от системы обработки сигнала не требуется, а сам цикл обмера может занимать достаточно долгое время (минуты). Так же, как в своё время падала стоимость лазерных дальномеров и уровней, применяемых в строительстве, следует ожидать дальнейшего снижения цен на строительные и горные лидары, — падение цен ограничено лишь стоимостью прецизионной сканирующей оптики. Типичные отрасли применения:

Маркшейдерское дело — обмеры открытых горных выработок, построение трёхмерных моделей подземных горных пластов (в том числе в связке с сейсмографическими инструментами).

Строительство — обмеры зданий, контроль отклонения плоскостей стен и несущих колонн от вертикали (в том числе в динамике), анализ вибраций стен и остекления. Обмеры котлованов, создание трёхмерных моделей стройплощадок для оценки объёмов земляных работ.

Архитектура — построение трёхмерных моделей городской среды для оценки влияния предлагаемых новостроек на облик города.

Морские технологии[править | править код]

Измерение глубины моря. Для этой задачи используется дифференциальный лидар авиационного базирования. Красные волны почти полностью отражаются поверхностью моря, тогда как зелёные частично проникают в воду, рассеиваются в ней, и отражаются от морского дна. Технология пока не применяется в гражданской гидрографии из-за высокой погрешности измерений и малого диапазона измеряемых глубин.

Поиск рыбы. Аналогичными средствами можно обнаруживать признаки косяков рыбы в приповерхностных слоях воды. Специалисты американской государственной лаборатории ESRL утверждают, что поиск рыбы лёгкими самолётами, оборудованных лидарами, как минимум на порядок дешевле, чем с судов, оборудованных эхолотами.[44]

Спасение людей на море. В 1999 ВМС США запатентовали конструкцию авиационного лидара, применимого для поиска людей и человеческих тел на поверхности моря;[45] принципиальная новизна этой разработки — в применении оптического маскирования отражённого сигнала, снижающего влияние помех.

Разминирование. Обнаружение мин возможно с помощью лидаров, непосредственно погруженных в воду (например, с буя, буксируемого катером или вертолётом), однако не имеет особых преимуществ по сравнению с активными акустическими системами (сонарами). Запатентованы средства обнаружения мин в приповерхностных слоях воды с помощью бортовых авиационных лидаров, эффективность таких лидаров не известна.

Системы подводного зрения. У истоков подводного применения лидаров на море стояла корпорация Kaman, запатентовавшая работоспособную технологию в 1989 году[46]. Интенсивное (по сравнению с воздушной средой) рассеивание света в воде долгое время ограничивало действие подводных лидаров десятками метров. Импульс лазера способен «пробить» и большие расстояния, но при этом полезный отражённый сигнал оказывается неразличим на фоне паразитной засветки. Kaman преодолела эту проблему с помощью электронных затворов, открывавших оптический путь к CCD-приёмнику только на короткий период ожидаемого отклика. Кроме этого, само изображение цели формировалось методом «вычитания тени», существенно повышавшим радиус действия системы. Kaman применяет метод короткого временного окна и к авиационным системам; в них момент открытия оптического канала задаётся высотомером самолёта-носителя.[47]

В последующие годы Kaman развивало тему лидаров как в направлении повышения радиуса действия и надёжности распознавания образов, так и части новых областей применения. Например, в 1999 запатентовано использование лидаров для установления скоростной подводной связи с беспилотными подводными аппаратами (управляемыми торпедами) по оптическому каналу.[48] В 1992 были предложены индивидуальные лидары для водолазов и аквалангистов.[49] Вероятно, что существенный пласт военно-морских разработок остаётся неизвестным широкой публике.

На транспорте[править | править код]

Определение скорости транспортных средств. В Австралии простейшие лидары используются для определения скорости автомобилей — так же, как и полицейские радары. Оптический «радар» существенно компактнее традиционного, однако менее надёжен в определении скорости современных легковых автомобилей: отражения от наклонных плоскостей сложной формы «запутывают» лидар.

Системы активной безопасности.

Информация в этом разделе устарела.

Вы можете помочь проекту, обновив его и убрав после этого данный шаблон.
«Люстра» из пяти сканирующих лидаров на крыше Stanley — беспилотного автомобиля, победителя DARPA Grand Challenge 2005 года

Беспилотные транспортные средства. В 1987—1995 годах в ходе проекта EUREKA Prometheus, стоившего Европейскому союзу более 1 млрд долларов, были выработаны первые практические разработки беспилотных автомобилей. Наиболее известны прототип, VaMP (разработчик — Университет бундесвера в Мюнхене) не использовал лидары из-за недостатка вычислительной мощности тогдашних процессоров. Новейшая их разработка, MuCAR-3 (2006), использует единственный лидар кругового обзора, поднятый высоко над крышей машины, наравне с направленной мультифокальной камерой обзора вперёд и инерциальной навигационной системой.[50] Лидар MuCAR-3 используется подсистемой выбора оптимальной траектории на пересечённой местности, он даёт угловое разрешение в 0,01° при динамическом диапазоне оптического приёмника 1:106, что даёт эффективный радиус обзора 120 м. Для достижения приемлемой скорости сканирования используется пучок из 64 расходящихся лазерных лучей, поэтому один полный «кадр» требует единственного оборота вращающегося зеркала.[50]

С 2003 года правительство США через агентство передовых военных разработок DARPA финансирует разработку и соревнование автомобилей-роботов. Ежегодно проводятся гонки DARPA Grand Challenge; в гонке 2005 года победила машина из Стэнфорда, в основе системы зрения которой — пять лидаров направленного обзора.

Приспособление от Apple с названием Project Titan для портирования функции автопилота на любой автомобиль было замечено на улицах в октябре 2017. Для тестирования автопилота Apple выбрала автомобиль Lexus RX. На его крышу установили устройство с радаром и 12 лидарами, которые помогают системе изучать окружение.

Системы автоматической стыковки. Канадская компания Optech разрабатывает и производит системы для автоматической стыковки на орбите, основанные на лидарах.[51]

Промышленные и сервисные роботы[править | править код]

Системы машинного зрения ближнего радиуса действия для роботов, основанные на сканирующем лидаре IBM, формируют цилиндрическую развёртку с углом охвата горизонта 360° и вертикальным углом зрения до +30..-30°. Собственно дальномер, установленный внутри сканирующей оптической головки, работает на постоянном излучении малой мощности, модулированном несущей частотой порядка 10 МГц. Расстояние до целей (при несущей 10 МГц — не более 15 м) пропорционально сдвигу фаз между опорным генератором, модулирующим источник света, и ответным сигналом. Лидар IBМ использует простой аналоговый фазовый дискриминатор непрерывного действия и имеет высокую угловую разрешающую способность, на практике ограниченную только быстродействием процессора, обрабатывающего трёхмерную «картинку» лидара, и системы автоматического регулирования уровня сигнала на выходе приёмника (быстрые АРУ вносят в принимаемый сигнал фазовые искажения, медленные — сужают динамический диапазон). В 1990—1994 подобные лидары испытывались в сервисных роботах Джозефа Энгельбергера,[52] однако от использования лидара в серийных изделиях тогда отказались в пользу дешёвых ультразвуковых датчиков.

Разные варианты расшифровки акронима LIDAR[править | править код]

  1. ↑ Middleton, W. E. K, and Spilhaus, A. F., Meteorological instruments, University of Toronto, 3rd ed. 1953
  2. 1 2 Англ. Американское метеорологическое общество. Музей лидаров (неопр.) (недоступная ссылка). Дата обращения 27 декабря 2007. Архивировано 27 апреля 2017 года.
  3. ↑ Marcus, I. R., Rangemeter for XM23 Rangefinder, U. S. DoD report of 17/02/1964,
  4. ↑ См., например, Deitz, Paul H., Atmospheric Effects on the Beam Propagation of the XM-23 Laser Rangefinder, Laser Range Instrumentation, SPIE Proceedings Vol. 11. Bellingham, WA: Society for Photo-Optical Instrumentation Engineers, 1967., p.35
  5. ↑ R. T. H. Collis, Lidar: A new atmospheric probe, Quarterly Journal of the Royal Meteorological Society, Volume 92, Issue 392, Pages 220—230, 1966
  6. ↑ Apollo Laser Ranging Experiments Yield Results. From LPI Bulletin, No. 72, NASA, August, 1994 [1]
  7. ↑ Lunar Geophysics, Geodesy, and Dynamics by James Williams Jean Dickey in 13th International Workshop on Laser Ranging, October 7-11, 2002, Washington, D. C.
  8. ↑ Практическая и теоретическая сторона разработок 1980-х годов зафиксирована в: Jean Rueger. Electronic Distance Measurement: An Introduction, Springer, 1990, 4th edition 1996, ISBN 978-3-540-61159-2
  9. Басов Н. Г., Кокурин Ю. Л. Лазерная локация Луны // Наука и человечество, 1986. — М.: Знание, 1986. — С. 262—277.
  10. Георгиев Н. И., Нойберт Р., Татевян С. К., Хайретдинов К. А. Лазерные спутниковые дальномеры // Наука и человечество, 1989. — М.: Знание, 1989. — С. 314—327.
  11. Таисия Филиппова. Точки в пространстве (неопр.). nplus1.ru. Дата обращения 22 января 2019.
  12. ↑ Датчик высоты облаков ДВО-2 (неопр.) (недоступная ссылка). Дата обращения 3 мая 2013. Архивировано 5 марта 2016 года.
  13. ↑ Датчик облаков лазерный ДОЛ-2
  14. ↑ Облакомеры (рус.). www.lsystems.ru. Дата обращения 20 августа 2018.
  15. ↑ Измерители высоты облаков CL31
  16. ↑ Измеритель дальности видимости ФИ-3
  17. ↑ Трансмиссометры LT31
  18. ↑ Laser Doppler Velocimetry Applied to the Measurement of Local and Global Wind, J. M Vaughan and P. A. Forrester, Wind Engineering, Vol. 13 No. 1 1989
  19. ↑ U.S. Patent 5 724 125
  20. ↑ U.S. Patent 6 634 600
  21. ↑ Захаров В. М. Метеорологическая лазерная локация / В. М. Захаров, О. К. Костко. — Ленинград: Гидрометеоиздат, 1977. — 222 с.
  22. 1 2 3 4 Зуев В. Е. Дистанционное оптическое зондирование атмосферы / В. Е. Зуев, В. В. Зуев. — СПб.: Гидрометеоиздат, 1992. — 232 с.
  23. ↑ Кащеев Б. Л. Дистанционные методы и средства исследования процессов в атмосфере Земли / Под общ. ред. Б. Л. Кащеева, Е. Г. Прошкина, М. Ф. Лагутина. — Харьков: Харьк. нац. ун-т радиоэлектроники; Бизнес Информ, 2002. — 426 с.
  24. ↑ Lidar measurements taken with a large-aperture liquid mirror. 2. Sodium resonance-fluorescence system / P.S. Argall, O. N. Vassiliev, R. J. Sica, and et al// Applied Optics. — 2000. — Vol. 39, No. 15. — P. 2393—2400.
  25. 1 2 Лазерный контроль атмосферы / Под ред. Э. Д. Хинкли. — М.: Мир, 1979. — 416 с.
  26. ↑ Behrendt A. Combined temperature lidar for measurements in the troposphere, stratosphere, and mesosphere / A. Behrendt, T. Nakamura, T. Tsuda // Applied optics. — 2004. — Vol. 43, No 14. — P. 2930—2939.
  27. ↑ Lidar: range-resolved optical remote sensing of the atmosphere series, Springer series in optical sciences, vol. 102 / C. Weitkamp (Ed.). — New York: Springer, 2005. — 460 p.
  28. ↑ Behrendt A. Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient // Applied Optics. — 2002. — Vol. 41, No 36. — P. 7657 — 7666.
  29. ↑ U.S. Patent 7 281 891
  30. ↑ U.S. Patent 4 893 026
  31. ↑ U.S. Patent 7 164 468
  32. ↑ NASA, октябрь 1994
  33. ↑ NASA, официальный сайт программы LITE
  34. ↑ NASA, официальный сайт программы LITE, карта наземных партнёров
  35. ↑ ADM-Aeolus
  36. ↑ Официальный сайт центра береговых работ NOAA (неопр.) (недоступная ссылка). Дата обращения 30 декабря 2007. Архивировано 14 декабря 2007 года.
  37. ↑ USGS, база данных лидарной топосъёмки
  38. ↑ USGS, национальная база данных высот по США (неопр.) (недоступная ссылка). Дата обращения 10 марта 2006. Архивировано 10 марта 2006 года.
  39. ↑ Blakely, R.J., Wells, R.E., and Weaver, C.S., 1999, Puget Sound aeromagnetic maps and data, U.S. Geological Survey Open-File Report 99—514, [2] Архивная копия от 20 декабря 2007 на Wayback Machine
  40. ↑ Технологии лазерного сканирования Земли открывают новые возможности / Статья от 02.02.2015 г. на innotechnews.com.
  41. ↑ Воздушное лазерное сканирование и цифровая аэрофотосъёмка / Статья на «АртГео».
  42. ↑ Лазерные снимки раскрывают ужасы Перовой мировой войны / Фоторепортаж на news.mail.ru.
  43. ↑ Затерянный храм в джунглях Ангкор-Ват — Камбоджа / Документальный фильм «Discovery Channel» из серии «Взрывая историю» (на видео 12:05 — 16:10 минуты).
  44. ↑ Сайт ESRL (англ.)
  45. ↑ U.S. Patent 5 989 087
  46. ↑ U.S. Patent 4 862 257
  47. ↑ U.S. Patent 4 964 721
  48. ↑ U.S. Patent 5 442 358
  49. ↑ U.S. Patent 5 353 054
  50. 1 2 The Cognitive Autonomous Vehicles of UniBwM: VaMors, VaMP, MuCAR-3 (недоступная ссылка) // Universitaet der Bundeswehr Muenchen 2004
  51. ↑ Optech, официальный сайт (неопр.) (недоступная ссылка). Дата обращения 30 декабря 2007. Архивировано 13 октября 2006 года.
  52. ↑ Status report, Advanced Technology Program, National Institute of Standards and Technologies, 1995 [3] Архивная копия от 7 декабря 2008 на Wayback Machine [4] Архивная копия от 16 сентября 2008 на Wayback Machine

ru.wikipedia.org


Смотрите также