Как изменить обогащение смеси в фазе старта шкода


Улучшить холодный запуск на ADR и других — Audi A4, 1.8 л., 1997 года на DRIVE2

Как на ADR и \ APU\ APT\ AEB утренний холодный запуск улучшить. была где то ссылка, но не сохранилась. Но сразу скажу, что это для нормального работающего авто, у которого нет ошибок. К примеру — у меня до этого (как поменял значения) с авто запуска заводилась не с первого раза при более – 25°С.
Применял на практике и помогало. Все что надо это VAG-COM, и знать свой логин.
• Описания каналов адаптации для Бензиновых:
Channel 01 — настройка оборотов холостого хода.
Channel 02 — подстройка состава смеси, при увеличении нагрузки. обогащение смеси под нагрузкой, когда тапка нажимается резко.
Channel 03 — подстройка состава смеси, при уменьшении нагрузки. обогащение смеси при плавном нажатии на тапку или при замедлении.
Channel 04 — обогащение в фазе *после старт*
Channel 05 — обогащение в фазе *прогрев*
Channel 06 — лямбда-регулирование. Задает скорость реакции контроллера на изменение сигнала с лямбды, большие значения — реакция быстрее, меньшие значения — реакция медленнее.
Channel 07 — дополнительная компенсация ограничителя скорости. Задает ограничение, добавляя по 1км/час
Channel 08 — отвечает за обогащение в фазе "старт".
Channel 09 — компенсация угла опережения зажигания. Регулирует угол с шагом 0.75 градуса во всем диапазоне оборотов
Сhannel 10 — базовый коэффициент подстройка по топливу (работает во всех режимах)
Channel 11 — рециркуляции выхлопных газов (EGR/AGR)
Channel 12 — настройка давления наддува, только для турбо машин, большие значения — увеличивают давление наддува, меньшие значения — уменьшают давление наддува.
Channel 13 — не используется
Channel 14 — дополнительная компенсация момента на х.х. Регулирует нагрузку двигателя на холостом ходу
Меняют в канале № 04, № 05, № 08. По умолчанию там 128, добавляют обычно до 160. Канал №04 ставим 148 — для ADR. и 160 — для APU\APT. Канал №05 154 — ADR\APU\APT. Канал № 08 160 — ADR, 156 — ADP. 192 — AEB. Кто то поднимает обороты холостого хода в канале №1, кому то нравится по играться в №2 .
Вот логины которые знаю ADR -06589,02145,03256,01283, ADP- 01283, APU\APT -01283.07825.37825.12830 . Подключаем VAG-COM, вкл. зажигания, заходим в 01 -двигатель -ошибок не должно быть!, 11 -вводим логин, если не подошел, второй раз пробовать через 4 минуты при выкл. зажигании, 10 -адаптация, каналы №04,05,08. Меняем значения, сохраняем и радуемся и я рад буду -кому помог.

www.drive2.ru

Разбираюсь с адаптацией. — Audi A6, 2.6 л., 1995 года на DRIVE2

Когда покупал машину, ничего не знал про такие моторы. Вообще ничего. Поэтому у продавана, будь он не ладен, были все шансы навешать лапши на любую тему и с контрольными лампами соединенными в параллель и про лампочку "ЧЕК", которй, как оказалось нет в нашем моторе. У меня из контрольных ламп есть только аирбаги и лампа "Иммо". Контроль АБС отрезал сам. АБС все равно не исправен а лампа мигает. Так вот лампа "Иммо" сейчас запихана в Аирбаг" а аирбаг в "Чек". Разобрался когда стал с ошибки изучать через адаптер. Адаптер универсальный из Кит-мастер. Кто будет таким пользоваться — очень легко разъем от платы отломить, свой вчера отломил. Ноут на сиденье положил и загнул.
В общем после замены лямбд ожидал изменений в работе двигателя, вроде как ровнее на холостых работать стал, хотя не идеал, слегка подтряхивает, но очень легко и редко. Где посмотреть как должно быть в идеале у меня нет. Расход не упал, примерно 9/100 по трассе. Но вот мощи не добавилось. Вспоминаю, как с другом на его БМВ со 150 конями катались, так там глаза закрывались при разгоне. А этот овощной какой то. И тут вспомнил, что продаван вешал лапшу про экономичную прошивку. Хотя сейчас понимаю, что это только лапша. Но решил проверить параметры адаптации. У меня блок 4A0 907 473 B (прошивка 5DA 007 193-01) Т.е. машина самых первых выпусков А6 — 94 год.
01 — 0
02 — 0
03 — 128
04 — 128
05 — 128
06 — 0
07 — 0
08 — 0
09 — 1
10 — 0
11 — 0
12 — 0
13 — 4 — про 13-й канал нигде ничего пока не нашел. Почему 4 и почему не изменить не понятно.
В сети нашел вот такую информацию по каналам:
Описания каналов адаптации для Бензиновых:

Channel 01 — настройка оборотов холостого хода.
Channel 02 — подстройка состава смеси, при увеличении нагрузки. обогащение смеси под нагрузкой, когда тапка нажимается резко.
Channel 03 — подстройка состава смеси, при уменьшении нагрузки. обогащение смеси при плавном нажатии на тапку или при замедлении.
Channel 04 — обогащение в фазе *после старт*
Channel 05 — обогащение в фазе *прогрев*
Channel 06 — лямбда-регулирование. Задает скорость реакции контроллера на изменение сигнала с лямбды, большие значения — реакция быстрее, меньшие значения — реакция медленнее.
Channel 07 — дополнительная компенсация ограничителя скорости. Задает ограничение, добавляя по 1км/час
Channel 08 — отвечает за обогащение в фазе "старт".
Channel 09 — компенсация угла опережения зажигания. Регулирует угол с шагом 0.75 градуса во всем диапазоне оборотов
Сhannel 10 — базовый коэффициент подстройка по топливу (работает во всех режимах)
Channel 11 — рециркуляции выхлопных газов (EGR/AGR)
Channel 12 — настройка давления наддува, только для турбо машин, большие значения — увеличивают давление наддува, меньшие значения — уменьшают давление наддува.
Channel 13 — не используется
Channel 14 — дополнительная компенсация момента на х.х. Регулирует нагрузку двигателя на холостом ходу большие значения — увеличивают спецификацию по нагрузке на холостом, меньшие значения – уменьшают
Не знаю, насколько применимо для наших ЭБУ.
Так же в сети есть следующие параметры адаптации.
01 — 0
02 — 128
03 — 0
04 — 128
05 — 128
06 — 128
07 — 0
08 — 0
09 — 0
10 — 1
11 — 0
12 — 0
13 — 0
Как видно разница в 2, 3, 6, 9, 10, 13 каналах а именно
мое/новое
2 — 0/128 — подстройка состава смеси, при увеличении нагрузки. обогащение смеси под нагрузкой, когда тапка нажимается резко.
3 — 128/0 — подстройка состава смеси, при уменьшении нагрузки. обогащение смеси при плавном нажатии на тапку или при замедлении.
6 — 0/128 — лямбда-регулирование. Задает скорость реакции контроллера на изменение сигнала с лямбды, большие значения — реакция быстрее, меньшие значения — реакция медленнее.
9 — 1/0 — компенсация угла опережения зажигания. Регулирует угол с шагом 0.75 градуса во всем диапазоне оборотов
10 — 0/1 — базовый коэффициент подстройка по топливу (работает во всех режимах)
С новыми параматрами двигатель запустился легко. Подозрительно быстро прогрелся до 90 градусов и запустил вентилятор радиатора — хотя лето на дворе. Но все равно быстрее чем обычно. Но дальнейшее поведение было совсем не ожидаемое. На педаль "газа" реагирует вроде острее, после раскрутки двигатель не сразу скидывает обороты а повисает на 1200 потом повышает на сотню и затем постепенно, ступенями, скидывает до 800. Прокатиться не пробовал, забил сразу старые параметры. Стало все как прежде. Сижу, курю интернет дальше. Не для того, что бы что то улучшить а для того, что бы понять как, что и откуда. Мысль приходить, что назначения каналов в разных блоках разное.

Channel 01 — настройка оборотов холостого хода.
Channel 02 — подстройка состава смеси, при увеличении нагрузки. обогащение смеси под нагрузкой, когда тапка нажимается резко.
Channel 03 — подстройка состава смеси, при уменьшении нагрузки. обогащение смеси при плавном нажатии на тапку или при замедлении.
Channel 04 — обогащение в фазе *после старт*
Channel 05 — обогащение в фазе *прогрев*
Channel 06 — лямбда-регулирование. Задает скорость реакции контроллера на изменение сигнала с лямбды, большие значения — реакция быстрее, меньшие значения — реакция медленнее.
Channel 07 — дополнительная компенсация ограничителя скорости. Задает ограничение, добавляя по 1км/час
Channel 08 — отвечает за обогащение в фазе "старт".
Channel 09 — компенсация угла опережения зажигания. Регулирует угол с шагом 0.75 градуса во всем диапазоне оборотов
Сhannel 10 — базовый коэффициент подстройка по топливу (работает во всех режимах)
Channel 11 — рециркуляции выхлопных газов (EGR/AGR)
Channel 12 — настройка давления наддува, только для турбо машин, большие значения — увеличивают давление наддува, меньшие значения — уменьшают давление наддува.
Channel 13 — не используется
Channel 14 — дополнительная компенсация момента на х.х. Регулирует нагрузку двигателя на холостом ходу большие значения — увеличивают спецификацию по нагрузке на холостом, меньшие значения – уменьшают

www.drive2.ru

Toyoter1 › Блог › Диагностика. Параметры коррекции состава воздушно-топливной смеси (фрагмент статьи).

В своё время сохранил себе умную статейку с умного сайта.
September 2007
V.P.Leshchenko
Images and Photos by Author
Использованы материалы Toyota Technical Training Course 852, Course 874, Course 982

Расчет базовой длительности количества топлива

Общеизвестно, что основное назначение БУ двигателем современного автомобиля это не только точное
управление составом смеси (временем открытого состояния форсунок) в соответствии с нагрузкой на двигатель и с учетом его состояния, но минимизация ущерба окружающей среде и здоровью людей. Поэтому основные «счетные» ресурсы процессора БУ направлены на решение этих задач. Расчет количества необходимого топлива происходит в несколько этапов.
• Формирование "базового времени впрыска"
• Коррекция времени впрыска по условиям эксплуатации
• Коррекция по напряжению бортовой сети
В начале БУ определяет параметры "базового» количества необходимого топлива и значение угла опережения зажигания на основании данных о частоте вращения коленчатого вала и нагрузке на двигатель. Эти значения считывается из соответствующих таблиц, запрограммированных заводом-изготовителем, и корректируется с использованием поправочного коэффициента, называемого "топливным балансом" (Fuel Trim). После этого производится коррекция состава смеси, которая обычно учитывает текущие (нынешние) параметры системы, то есть состояние двигателя и его систем в настоящее время. К таковым относятся следующие:
• температура охлаждающей жидкости
• температура воздуха во впускном коллекторе
• положение дроссельной заслонки
• состав отработавших газов
• давление в топливной системе
• атмосферное давление (высота над уровнем моря)
• нагрузка на двигатель (Calc Load) определяется по количеству воздуха, поступающего вцилиндры, определяется датчиком расхода/потока воздуха. Возможно использование различных типов: Vane Air Flow meter, Karman Vortex Air Flow meter, Mass Air Flow meter1 или датчиком разрежения (абсолютного давления) во впускном коллекторе (Manifold Absolute Pressure Sensor)
• частота вращения двигателя определяется датчиком положения коленчатого вала
• скорость автомобиля — датчиком скорости
• температура двигателя определяется датчиком температуры охлаждающей жидкости
• положение дроссельной заслонки определяется o датчиком положения дроссельной заслонки o датчиком холостого хода
• температура воздуха определяется датчиком температуры воздуха
• состав отработавших газов может определяться с помощью следующих датчиков:
кислородные датчики (Oxygen Sensor)
датчики обедненной смеси (Sensor Lean Mixture)
датчики состава топливно-воздушной смеси (Air/Fuel Ratio Sensor)
датчик содержания NOx2
• высота над уровнем моря — датчиком давления
• давление в топливной системе – соответствующим датчиком в насосе высокого давления или в топливной магистрали.
Топливный баланс и обратная связь по составу отработавших газов
Величина коррекции количества топлива, подаваемого в цилиндры по напряжению датчика содержания кислорода, зависит от различных факторов. Цель этой коррекции заключается в обеспечении стехиометрического состава смеси. Если степень необходимого вмешательства невелика, например, менее 10%, то БУ справляется с этим сравнительно легко. При необходимости изменения базового значения более чем на 20 %, т.е. для осуществления более существенного изменения, компьютер проводит процедуру "переобучения" (адаптации). Уменьшая или увеличивая базовое время впрыска топлива в пределах допустимого, он проверяет реакцию системы и устанавливает (записывает в память) новое значение этого параметра. При этом для точного поддержания стехиометрического состава топливно-воздушной смеси (14.7:1) по-прежнему используется напряжение датчиков содержания кислорода. В зависимости от различных факторов, в том числе, от высоты над уровнем моря, износа поршневой группы и форсунок, допусков на качество топлива и на изменения в состоянии двигателя, коррекция, определяемая обратной связью по составу отработавших газов, изменяется. В режиме замкнутой обратной связи по напряжению кислородных датчиков происходит изменение состава смеси посредством небольших изменений (приращений). Поэтому, если необходима относительно небольшая коррекция (до 3 %), то ECM сравнительно просто изменяет состав смеси. Обычно диапазон возможного изменения состава смеси составляют ± 20 % от его базового значения.

При необходимости значительных изменений и для предотвращения возможных неточностей или уменьшения
времени отклика, в память записывается информация о результатах коррекции смеси в предыдущих поездках. Эта информация используется в качестве начальной при следующих поездках, чтопозволяет повысить точность поддержания оптимального состава топливной смеси сучетом реального состояния
двигателя. Таким образом, реализуется "процедура переобучения ECM", известная под названием "Computer
Relearn Procedures"3. Например, в памяти ECM записана "заводская установка" необходимости поддержания
времени впрыска топлива прогретого двигателя равного 3.0 мсек. Если после осуществления коррекции по напряжению кислородного датчика окажется, что необходимо открывать форсунки при прогретом двигателе импульсами напряжения длительностью 3,3 мсек, то при следующих поездках БУ "начнет" регулировку с этого значения.
Влияние топливного баланса на количество подаваемого топлива
Топливный баланс (FT-Fuel Trim) — параметр, который показывает (в процентах) на сколько необходимо изменить длительность подачи топлива, для поддержания оптимального состава смеси (14.7:1). При использовании нескольких датчиков кислорода, система впрыска различает этот параметр для каждого из них. Кроме этого, используются два различных по сути значения этого параметра.
Долговременный топливный баланс (Long Fuel Trim — LFT) характеризует величину изменения базового значения состава смеси, которое произведено для её оптимизации. Этот параметр – результат адаптации системы управления к состоянию двигателя, его систем и компонентов. Например, некоторое снижение давления в топливной системе, негерметичность системы впуска или загрязненность форсунок влекут за собой коррекцию в сторону обогащения смеси.
Положительное значение соответствует обедненной смеси и увеличению подачи топлива. Отрицательное – уменьшению. Диапазон изменений этого параметра составляет ±20%. Этот параметр входит в состав "потока данных" (Data Stream) при сканировании инжекторных систем.
Долговременный топливный баланс (LFT), в отличие от кратковременного (Short Fuel Trim — SFT), — это коррекция, которая остается в памяти, и после выключения зажигания, и это есть характеристика базового времени подачи топлива.
Кратковременный топливный баланс (SFT) — дополнительная и временная коррекция базового состава смеси, которая учитывает изменения напряжения кислородного датчика или тока его чувствительного элемента, то есть "уточняет" состав смеси в настоящий момент. Нормальный диапазон этого параметра составляет ± 20%. При исправной системе он редко больше чем ± 10%.
Если базовая продолжительность подачи топлива приводит к бедной смеси, то баланс SFT откликается положительной коррекцией (от +1 до +20 %), с тем чтобы увеличить подачу топлива и обогатить смесь. Если базовая длительность слишком велика, то параметр SFT реагирует на это отрицательной коррекцией состава смеси (от -1 до -20 %) для уменьшения количества топлива (обеднения смеси). Когда этот параметр находится в диапазоне ± 0%, то это является признаком нейтрального состояния, при котором состав близок к стехиометрическому. Если изменения SFT существенно отличаются от ±10%, то коррекция LFT изменяет базовую длительность впрыска топлива. В результате этого диапазон изменения SFT вновь становится равным ±10%.
В отличие от SFT, которое определяет продолжительность впрыска топлива только в режиме замкнутой обратной связи, параметр LFT корректирует поправочный коэффициент базовой продолжительности впрыска топлива и при разомкнутой обратной связи. В некоторых системах значения LFT сохраняются в энергонезависимой памяти (NVRAM nonvolatile RAM) и не "обнуляются" при отключении аккумулятора. В этом случае ЕСМ "помнит" текущее значение коррекции и при следующих поездках использует сохраненные данные. Но при этом процесс "переобучения" продолжается.
При проведении диагностики с помощью сканеров в автомобилях прошлых лет (pre- OBD II), параметр LFT отображаются как Target A/F
При диагностике Toyota обычными инструментальными средствами значение LFT (Learned Voltage Feedback — LVF) можно проверить измеряя напряжение на контакте VF1 диагностического разъема DLC No.1.
Для лучшего понимания рассмотрим пример адаптации системы к возможному изменению ее
состояний (рис. 3).

Пример #1. Представлены параметры исправной топливной системы. Базовая длительность при
указанной нагрузке и частоте вращения коленчатого вала составляет 3.0 мсек. SFT изменяется в диапазоне
±10%, выходное напряжение датчика кислорода переключается нормально. Система исправна и не требует вмешательства.
Пример #2. Представлены параметры при возникновении негерметичности впускного коллектора
("подсос" воздуха). Так как нагрузка на двигатель не изменилась, то базовая длительность по-прежнему составляет 3.0 мсек.
• Дополнительный воздух обедняет смесь, поэтому уменьшается выходное напряжение
кислородного датчика.
• SFT безуспешно пытается исправить это положение, но достигает предела +20%.
• ЕСМ "узнает", что необходимо осуществить коррекцию в сторону увеличения базовой продолжительности впрыска топлива (LFT) для того, чтобы выходное напряжение датчика кислорода находилось в допустимом рабочем диапазоне.
Пример #3. Показан результат того, что ЕСМ изменил LFT на +10 %. Хотя нагрузка и частота не изменились, базовое время впрыска топлива теперь составляет 3.3 мсек.
• В этом состоянии система впрыска поставляет достаточно топлива, чтобы восстановить почти нормальное переключение напряжения датчика кислорода. Переключения происходят, но диапазон напряжения кислородного датчика смещен в зону обедненного состава смеси. Для устранения этого состояния требуется все еще чрезмерная коррекция (SFT = +15 %).
• ЕСМ проводит долговременную коррекцию базовой длительности впрыска (LFT) для того, чтобы параметр SFT снова был в диапазоне ±10%.
Пример #4. Описывает результат дальнейшего изменения LFT. Нагрузка и частота вращения коленчатого вала остались без изменения (как и в примере #1), но базовая продолжительность впрыска топлива увеличилась на 20 % и теперь стала равной 3.6 мсек.
• Базовая длительность подачи снова в пределах ±10% от заданного времени впрыска.
• Нормальные переключения датчика кислорода сопровождаются изменениями SFT ±10% от базовой продолжительности подачи топлива.
Таким образом, в результате адаптации системы впрыска к реальному состоянию системы, состав смеси становится оптимальным. В том случае, когда ЕСМ не в состоянии обеспечить необходимый состав топливно-воздушной смеси, в его память записываются коды неисправности:
P0171 System too Lean (Bank1)
P0172 System too Rich (Bank1)
P0174 System too Lean (Bank2)
P0175 System to Rich (Bank2)
Достаточно интересно влияние некоторых "непрямых" воздействий на базовую длительность впрыска. Например, отмечено уменьшение значения этого параметра после промывки форсунок. Не менее интересна реакция системы впрыска на регулировку опережения зажигания. После установки правильного начального угла опережения зажигания наблюдается уменьшение времени впрыска на холостом ходу прогретого двигателя.

www.drive2.ru

DealerGM › Блог › Долгосрочная подстройка топлива, долгосрочная коррекция, P-0170, P-0171 , P-0172 , P-0174, P-0175 -как с этим бороться и пр.

Думаю здесь надо начать разговор о качестве смеси, какая она должна быть, что её регулирует, ну и кто все же отслеживает и зажигает нам неисправность, в тяжелых случаях даже не дает ехать в связи с потерей мощности ДВС.

Правильная топливо воздушная смесь должна иметь соотношение 14,7 : 1, при данном составе топливной смеси долгосрочная коррекция топлива составит 0%, это идеальное состояние двигателя. Для нормальной работы двигателя вполне устроит и параметр в 5-8%, как в сторону обогащения так и в сторону обеднения смеси. Выше это уже неисправность требующая к себе внимания и действий, причем предел регулирования топливной системы блоком управления двигателем у каждого производителя может разнится, так же например зависит и от типа ДВС. В пример приведу программное обеспечение блоков GM: корректировка по топливу может составлять до плюс-минус 20%. Это тот диапазон, в рамках которого компьютер может варировать количество поступающего топлива через форсунки в камеры сгорания, а для двигателей с непосредственным впрыском в камеру сгорания эти рамки уменьшены до плюс-минус 12.5%.
Как только величина топливной корректировки начинает превышать 12.5%, блок «понимает», что «так дальше жить нельзя» и «перестает бороться» — зажигает на панели приборов CHECK DTC P017*.

Дак кто же отслеживает нашу неисправность, кто этот гуру который знает, что происходит у нас в камере сгорания? А контролером тут выступает лямбда зонд, наш датчик кислорода находящийся до катализатора постоянно регулирует топливо подачу при помощи внесенной в блок управления (ECM) программы.
Когда же считать наш автомобиль неисправным, когда корректировка выросла выше 10% или только после того как загорелся чек? Тут объяснение простое чек загорится когда у коррекции кончится предел, а загорается он, не потому что блок управления хочет спасти ваш ДВС а только из экологических соображений, вы батенька загрязняете экологическую среду. Поэтому действия по устранению неисправности можно начинать до появления CHECK, если ваши коррекции убежали за 8% -приступайте. Почти во всех случаях можно добиться идеального результата плюс-минус 1-2%

Пора приступать к ремонтам. Во первых необходимо обратить внимание на сопутствующие ошибки, если это например: клапан регулировки фаз, неверное соотношение валов, пропуски зажигания, лямбда зонды (на тот который после катализатора можно не обращать внимания он отслеживает только работу катализатора, но надо быть уверенным, что пропускание выхлопа каталитический нейтрализатор не затруднено), некорректные показания датчика температуры охлаждающей жидкости и пр. — устраняем сперва их.

При LONG-коррекции в плюс проверяем:
— поступление «дополнительного» воздуха до камер сгорания (неплотные соединения, разрывы), так называемые подсосы воздуха, поск необходимо вести от ДМРВ до ГБЦ включая турбину и интеркуллер, автомобили без ДМРВ — от датчика температуры впускаемого воздуха (или дроссельной заслонки, что раньше стоит) до ГБЦ.
— работа топливного насоса, другие причины недостаточного давления топлива (фильтр, регулятор давления)
— пропускная способность топливных форсунок, в экране данных смотрим время работы инжектора
— выход из строя системы EGR, в результате чего в камеры сгорания поступает некорректная дополнительная порция воздуха/топлива
— некорректные показания MAF(MAP) – sensor «старение» сенсора, в результате чего происходит неправильное измерение прошедшего воздуха за единицу времени, выход сенсора из строя.

При LONG-коррекции в минус:
— «подсос» воздуха ДО датчика кислорода (лямбда зонда), в результате чего О2-sensor начинает «неправильно определять» наличие «свободного кислорода» в отработавших газах. Где сечет выпуск определить легко, описывать не буду.
— засорение воздушного фильтра. Помимо того что воздуха через него проходит мало, увеличивается разряжение во впускном коллекторе ведет к неправильной работе систем вентиляция бака и картерных газов, возможно закидывание маслом впуска.
— опять же, некорректные показания MAF(MAP) – sensor —
— давление топлива превышает допустимое значение, проверяем регулятор и его управление
— топливные форсунки «замороженности» срабатывания, или пропускание топлива в закрытом положении. Сопутсвующе может проявляться плохой запуск по утрам (чихание, долгая прокрутка стартером), сырые свечи.

Ну и + ко всем можно отнести — механические и остальные причины ( воспламенение и сгорание топливо-воздушной смеси становится некорректным в результате неправильного зазора в клапанах, «слабой» искры, «постаревшей» свечи зажигания. Выход из строя или нестабильная (неправильная) работа системы VVT-i, дроссельной заслонки, клапана EGR, изменяемая геометрия впускного коллектора, все последние сопровождаются обычно сопутствующими ошибками, с них и начинайте ремонт.

Как Выполнять ремонты по устранению: у некоторых пунктов я указал какие действия необходимо провести, остались нераскрытыми подсос воздуха во впуск, и выход из строя MAF или MAP. Работу обоих датчиков можно проверить, как при помощи диагностики сравнив данные на холостом ходу с данными в программе по ремонту производителя, или при помощи вольтметра на просторах сети легко найти данные рабочего датчика на все модели, ну и проверить датчик температуры работающим в паре с этими датчиками, таблиц в сети так же навалом.

Ну про подсос воздуха напишу подробно, как найти, т.к. процедура поиска у всех производителей одинаковая.
Искать на слух практически бесполезно, тем более на современных авто шлангов и патрубков подключенных к впускному коллектору навалом. Поиск проще всего производить промышленным или автомобильным дымо-генератором,

Очень просто, присоединяем на любой штуцер впускного коллектора, на впуск сняв патрубок с воздушного фильтра ставим заглушку (можно использовать несколько целлофановых пакета натянув их на патрубок и с хомутом обратно одеть на корпус фильтра), дуем отверстие обязательно себя проявит, если оно очень маленькое, наполняем коллектор дымом далее снимаем устроиство и давим сжатым во духом 2 бар будет достаточно. При отсутствии дымо-генератора модно его изготовить, в сети умельцев много — электронная сигарета и пр. Признаюсь у меня на работе тоже самодельный, сделал сам, а работаю я на оф. дилере — смешно)).
При отсуцтвии дымо-генератора, нам понадобится распылитель и немного бензина. Я на работе использую очиститель тормозов так называемый Брэйк клинер — он более летучий, не оставляет следов и запаха, горит злее.

На заведенной машине аккуратно поливаем впускной коолектор из спрея, проходим все прилегающие шланги, когда наша смесь проидет возле отверстия обороты двигателя самопроизвольно возрастут, где это происходит там и отверстие, чем дальше от гбц тем дольше будет пауза перед поднятием оборотов, например если пробит интеркуллер и поливать в его районе задержка примерно 2-4 секунды. Опять же если отверстие очень мало можно усилить эффект всасывания попросив кого нибудь подержать обороты ДВС повыше, держать их ровно педалью акселератора. Так например на днях я искал подсос воздуха на HUMMER2 не применяя дымо-генератор, машина после установки газового оборудования в шараш сервисе видимо, почти сразу после инсталяции стала хандрить, в коллектор внедряли форсунки вставлены убого на клей, но герметично.

Нашел, обороты моментально подскакивали когда проходил спреем вдоль прилегания коллектора к одной из ГБЦ, мною были заказаны новые прокладки, шли 2 недели, но после разбора оказалось что дело не в прокладках.

Отчаянные газовщики, не знаю зачем, может задрали плоскость или ещё че там их побудило, в общем убили плоскость прилегания, толи рашпилем они шлифовали, толи об асфальт, стену в падике. В общем бывает и такое, коллектор решили заменить.

Но факт остался фактом, минимальный подсос был найден при помощи простого спрея, а был он именно по рискам от чьих то стараний, так как отклонение в плоскости прокладка с резиновой вставкой способна предотвратить. LONG был +15%.
Все проверки описанные выше должны входить в диагностику, кроме тех которые требуют разбора (снятие бака, насоса, форсунок и пр). Не платите за дианостику, если вам сказали код ошибки но не сказали причину, это была не диагнотика а чтение кодов, а читистов развелось массы, читают что делать не знают, за чтение 300р. не более.
Ну все, я заканчиваю, ставте лайки, берегите своих коней.

www.drive2.ru

Долгосрочная коррекция — Skoda Octavia, 1.8 л., 2008 года на DRIVE2

Друзья, всем доброго времени суток!

С наступлением теплых дней обратил внимание, что у меня подрос расход бензина где-то на 0,5-0,8 литра на сотню. Катаюсь в основном по трассе на работу и домой, но в середине пути успеваю постоять в пробке минут 5 — 10, проезжая славный город Солнечногорск. В среднем дорога занимает минут 40 — час.

Если зимой я прибывал к месту прибытия и видел цифры 7,4 — 8,0, то сейчас 7,9 — 8,7. С чем может быть связано да хрен его разберет. Езжу вроде так же, больше 120 обычно не гоню, бывает на обогнах притоплю, но это уж кому с кем не бывает, но в основном это пенсионерско — расслабленный режим.

Так вот я о чем… Решил компутер подключить к мозгам шкоды. И что собственно увидел — долгосрочная коррекция переваливает за 9%. Проверил сначала EasyOBD

Полный размер

Затем MotorData в разных режимах:

Полный размер

Полный размер

Полный размер

Ошибок никаких нет. Последний сброс производился 28 тысяч км назад — осенью это было.
Пропусков зажигания так же нет в сохранениях.
Свечи так же повествуют о богатой смеси: светлые электроды и черная юбочка.

Полный размер

Записал видео-лог :

Перед тем как обратить на данную вещь внимание, проводил стандартное ТО: замена резины, масла, свечки, кстати, поменял, фильтра, ну и прочие не связанные с ездой вещи…

Первые мысли навскидку:
— форсунки мыть надо
— подсос воздуха за ДМРВ
— катализатор дохнет (на второй лямбде, кстати, значение соответствует слегка обогащенной смеси)
— ну или первая лямбда просится на покой.

Так что буду рад услышать ваши мнения на данную тему, а если они будут еще и подкреплены весомыми аргументами, то это будет абсолютно великолепно!

www.drive2.ru

Коррекция подачи топлива по лямбда зонду. Закрытый режим.