Как изменить обогащение смеси в фазе старта шкода
Улучшить холодный запуск на ADR и других — Audi A4, 1.8 л., 1997 года на DRIVE2
Как на ADR и \ APU\ APT\ AEB утренний холодный запуск улучшить. была где то ссылка, но не сохранилась. Но сразу скажу, что это для нормального работающего авто, у которого нет ошибок. К примеру — у меня до этого (как поменял значения) с авто запуска заводилась не с первого раза при более – 25°С.
Применял на практике и помогало. Все что надо это VAG-COM, и знать свой логин.
• Описания каналов адаптации для Бензиновых:
Channel 01 — настройка оборотов холостого хода.
Channel 02 — подстройка состава смеси, при увеличении нагрузки. обогащение смеси под нагрузкой, когда тапка нажимается резко.
Channel 03 — подстройка состава смеси, при уменьшении нагрузки. обогащение смеси при плавном нажатии на тапку или при замедлении.
Channel 04 — обогащение в фазе *после старт*
Channel 05 — обогащение в фазе *прогрев*
Channel 06 — лямбда-регулирование. Задает скорость реакции контроллера на изменение сигнала с лямбды, большие значения — реакция быстрее, меньшие значения — реакция медленнее.
Channel 07 — дополнительная компенсация ограничителя скорости. Задает ограничение, добавляя по 1км/час
Channel 08 — отвечает за обогащение в фазе "старт".
Channel 09 — компенсация угла опережения зажигания. Регулирует угол с шагом 0.75 градуса во всем диапазоне оборотов
Сhannel 10 — базовый коэффициент подстройка по топливу (работает во всех режимах)
Channel 11 — рециркуляции выхлопных газов (EGR/AGR)
Channel 12 — настройка давления наддува, только для турбо машин, большие значения — увеличивают давление наддува, меньшие значения — уменьшают давление наддува.
Channel 13 — не используется
Channel 14 — дополнительная компенсация момента на х.х. Регулирует нагрузку двигателя на холостом ходу
Меняют в канале № 04, № 05, № 08. По умолчанию там 128, добавляют обычно до 160. Канал №04 ставим 148 — для ADR. и 160 — для APU\APT. Канал №05 154 — ADR\APU\APT. Канал № 08 160 — ADR, 156 — ADP. 192 — AEB. Кто то поднимает обороты холостого хода в канале №1, кому то нравится по играться в №2 .
Вот логины которые знаю ADR -06589,02145,03256,01283, ADP- 01283, APU\APT -01283.07825.37825.12830 . Подключаем VAG-COM, вкл. зажигания, заходим в 01 -двигатель -ошибок не должно быть!, 11 -вводим логин, если не подошел, второй раз пробовать через 4 минуты при выкл. зажигании, 10 -адаптация, каналы №04,05,08. Меняем значения, сохраняем и радуемся и я рад буду -кому помог.
www.drive2.ru
Разбираюсь с адаптацией. — Audi A6, 2.6 л., 1995 года на DRIVE2
Когда покупал машину, ничего не знал про такие моторы. Вообще ничего. Поэтому у продавана, будь он не ладен, были все шансы навешать лапши на любую тему и с контрольными лампами соединенными в параллель и про лампочку "ЧЕК", которй, как оказалось нет в нашем моторе. У меня из контрольных ламп есть только аирбаги и лампа "Иммо". Контроль АБС отрезал сам. АБС все равно не исправен а лампа мигает. Так вот лампа "Иммо" сейчас запихана в Аирбаг" а аирбаг в "Чек". Разобрался когда стал с ошибки изучать через адаптер. Адаптер универсальный из Кит-мастер. Кто будет таким пользоваться — очень легко разъем от платы отломить, свой вчера отломил. Ноут на сиденье положил и загнул.
В общем после замены лямбд ожидал изменений в работе двигателя, вроде как ровнее на холостых работать стал, хотя не идеал, слегка подтряхивает, но очень легко и редко. Где посмотреть как должно быть в идеале у меня нет. Расход не упал, примерно 9/100 по трассе. Но вот мощи не добавилось. Вспоминаю, как с другом на его БМВ со 150 конями катались, так там глаза закрывались при разгоне. А этот овощной какой то. И тут вспомнил, что продаван вешал лапшу про экономичную прошивку. Хотя сейчас понимаю, что это только лапша. Но решил проверить параметры адаптации. У меня блок 4A0 907 473 B (прошивка 5DA 007 193-01) Т.е. машина самых первых выпусков А6 — 94 год.
01 — 0
02 — 0
03 — 128
04 — 128
05 — 128
06 — 0
07 — 0
08 — 0
09 — 1
10 — 0
11 — 0
12 — 0
13 — 4 — про 13-й канал нигде ничего пока не нашел. Почему 4 и почему не изменить не понятно.
В сети нашел вот такую информацию по каналам:
Описания каналов адаптации для Бензиновых:
Channel 01 — настройка оборотов холостого хода.
Channel 02 — подстройка состава смеси, при увеличении нагрузки. обогащение смеси под нагрузкой, когда тапка нажимается резко.
Channel 03 — подстройка состава смеси, при уменьшении нагрузки. обогащение смеси при плавном нажатии на тапку или при замедлении.
Channel 04 — обогащение в фазе *после старт*
Channel 05 — обогащение в фазе *прогрев*
Channel 06 — лямбда-регулирование. Задает скорость реакции контроллера на изменение сигнала с лямбды, большие значения — реакция быстрее, меньшие значения — реакция медленнее.
Channel 07 — дополнительная компенсация ограничителя скорости. Задает ограничение, добавляя по 1км/час
Channel 08 — отвечает за обогащение в фазе "старт".
Channel 09 — компенсация угла опережения зажигания. Регулирует угол с шагом 0.75 градуса во всем диапазоне оборотов
Сhannel 10 — базовый коэффициент подстройка по топливу (работает во всех режимах)
Channel 11 — рециркуляции выхлопных газов (EGR/AGR)
Channel 12 — настройка давления наддува, только для турбо машин, большие значения — увеличивают давление наддува, меньшие значения — уменьшают давление наддува.
Channel 13 — не используется
Channel 14 — дополнительная компенсация момента на х.х. Регулирует нагрузку двигателя на холостом ходу большие значения — увеличивают спецификацию по нагрузке на холостом, меньшие значения – уменьшают
Не знаю, насколько применимо для наших ЭБУ.
Так же в сети есть следующие параметры адаптации.
01 — 0
02 — 128
03 — 0
04 — 128
05 — 128
06 — 128
07 — 0
08 — 0
09 — 0
10 — 1
11 — 0
12 — 0
13 — 0
Как видно разница в 2, 3, 6, 9, 10, 13 каналах а именно
мое/новое
2 — 0/128 — подстройка состава смеси, при увеличении нагрузки. обогащение смеси под нагрузкой, когда тапка нажимается резко.
3 — 128/0 — подстройка состава смеси, при уменьшении нагрузки. обогащение смеси при плавном нажатии на тапку или при замедлении.
6 — 0/128 — лямбда-регулирование. Задает скорость реакции контроллера на изменение сигнала с лямбды, большие значения — реакция быстрее, меньшие значения — реакция медленнее.
9 — 1/0 — компенсация угла опережения зажигания. Регулирует угол с шагом 0.75 градуса во всем диапазоне оборотов
10 — 0/1 — базовый коэффициент подстройка по топливу (работает во всех режимах)
С новыми параматрами двигатель запустился легко. Подозрительно быстро прогрелся до 90 градусов и запустил вентилятор радиатора — хотя лето на дворе. Но все равно быстрее чем обычно. Но дальнейшее поведение было совсем не ожидаемое. На педаль "газа" реагирует вроде острее, после раскрутки двигатель не сразу скидывает обороты а повисает на 1200 потом повышает на сотню и затем постепенно, ступенями, скидывает до 800. Прокатиться не пробовал, забил сразу старые параметры. Стало все как прежде. Сижу, курю интернет дальше. Не для того, что бы что то улучшить а для того, что бы понять как, что и откуда. Мысль приходить, что назначения каналов в разных блоках разное.
Channel 01 — настройка оборотов холостого хода.
Channel 02 — подстройка состава смеси, при увеличении нагрузки. обогащение смеси под нагрузкой, когда тапка нажимается резко.
Channel 03 — подстройка состава смеси, при уменьшении нагрузки. обогащение смеси при плавном нажатии на тапку или при замедлении.
Channel 04 — обогащение в фазе *после старт*
Channel 05 — обогащение в фазе *прогрев*
Channel 06 — лямбда-регулирование. Задает скорость реакции контроллера на изменение сигнала с лямбды, большие значения — реакция быстрее, меньшие значения — реакция медленнее.
Channel 07 — дополнительная компенсация ограничителя скорости. Задает ограничение, добавляя по 1км/час
Channel 08 — отвечает за обогащение в фазе "старт".
Channel 09 — компенсация угла опережения зажигания. Регулирует угол с шагом 0.75 градуса во всем диапазоне оборотов
Сhannel 10 — базовый коэффициент подстройка по топливу (работает во всех режимах)
Channel 11 — рециркуляции выхлопных газов (EGR/AGR)
Channel 12 — настройка давления наддува, только для турбо машин, большие значения — увеличивают давление наддува, меньшие значения — уменьшают давление наддува.
Channel 13 — не используется
Channel 14 — дополнительная компенсация момента на х.х. Регулирует нагрузку двигателя на холостом ходу большие значения — увеличивают спецификацию по нагрузке на холостом, меньшие значения – уменьшают
www.drive2.ru
Toyoter1 › Блог › Диагностика. Параметры коррекции состава воздушно-топливной смеси (фрагмент статьи).
В своё время сохранил себе умную статейку с умного сайта.
September 2007
V.P.Leshchenko
Images and Photos by Author
Использованы материалы Toyota Technical Training Course 852, Course 874, Course 982
Расчет базовой длительности количества топлива

Общеизвестно, что основное назначение БУ двигателем современного автомобиля это не только точное
управление составом смеси (временем открытого состояния форсунок) в соответствии с нагрузкой на двигатель и с учетом его состояния, но минимизация ущерба окружающей среде и здоровью людей. Поэтому основные «счетные» ресурсы процессора БУ направлены на решение этих задач. Расчет количества необходимого топлива происходит в несколько этапов.
• Формирование "базового времени впрыска"
• Коррекция времени впрыска по условиям эксплуатации
• Коррекция по напряжению бортовой сети
В начале БУ определяет параметры "базового» количества необходимого топлива и значение угла опережения зажигания на основании данных о частоте вращения коленчатого вала и нагрузке на двигатель. Эти значения считывается из соответствующих таблиц, запрограммированных заводом-изготовителем, и корректируется с использованием поправочного коэффициента, называемого "топливным балансом" (Fuel Trim). После этого производится коррекция состава смеси, которая обычно учитывает текущие (нынешние) параметры системы, то есть состояние двигателя и его систем в настоящее время. К таковым относятся следующие:
• температура охлаждающей жидкости
• температура воздуха во впускном коллекторе
• положение дроссельной заслонки
• состав отработавших газов
• давление в топливной системе
• атмосферное давление (высота над уровнем моря)
• нагрузка на двигатель (Calc Load) определяется по количеству воздуха, поступающего вцилиндры, определяется датчиком расхода/потока воздуха. Возможно использование различных типов: Vane Air Flow meter, Karman Vortex Air Flow meter, Mass Air Flow meter1 или датчиком разрежения (абсолютного давления) во впускном коллекторе (Manifold Absolute Pressure Sensor)
• частота вращения двигателя определяется датчиком положения коленчатого вала
• скорость автомобиля — датчиком скорости
• температура двигателя определяется датчиком температуры охлаждающей жидкости
• положение дроссельной заслонки определяется o датчиком положения дроссельной заслонки o датчиком холостого хода
• температура воздуха определяется датчиком температуры воздуха
• состав отработавших газов может определяться с помощью следующих датчиков:
кислородные датчики (Oxygen Sensor)
датчики обедненной смеси (Sensor Lean Mixture)
датчики состава топливно-воздушной смеси (Air/Fuel Ratio Sensor)
датчик содержания NOx2
• высота над уровнем моря — датчиком давления
• давление в топливной системе – соответствующим датчиком в насосе высокого давления или в топливной магистрали.
Топливный баланс и обратная связь по составу отработавших газов
Величина коррекции количества топлива, подаваемого в цилиндры по напряжению датчика содержания кислорода, зависит от различных факторов. Цель этой коррекции заключается в обеспечении стехиометрического состава смеси. Если степень необходимого вмешательства невелика, например, менее 10%, то БУ справляется с этим сравнительно легко. При необходимости изменения базового значения более чем на 20 %, т.е. для осуществления более существенного изменения, компьютер проводит процедуру "переобучения" (адаптации). Уменьшая или увеличивая базовое время впрыска топлива в пределах допустимого, он проверяет реакцию системы и устанавливает (записывает в память) новое значение этого параметра. При этом для точного поддержания стехиометрического состава топливно-воздушной смеси (14.7:1) по-прежнему используется напряжение датчиков содержания кислорода. В зависимости от различных факторов, в том числе, от высоты над уровнем моря, износа поршневой группы и форсунок, допусков на качество топлива и на изменения в состоянии двигателя, коррекция, определяемая обратной связью по составу отработавших газов, изменяется. В режиме замкнутой обратной связи по напряжению кислородных датчиков происходит изменение состава смеси посредством небольших изменений (приращений). Поэтому, если необходима относительно небольшая коррекция (до 3 %), то ECM сравнительно просто изменяет состав смеси. Обычно диапазон возможного изменения состава смеси составляют ± 20 % от его базового значения.

При необходимости значительных изменений и для предотвращения возможных неточностей или уменьшения
времени отклика, в память записывается информация о результатах коррекции смеси в предыдущих поездках. Эта информация используется в качестве начальной при следующих поездках, чтопозволяет повысить точность поддержания оптимального состава топливной смеси сучетом реального состояния
двигателя. Таким образом, реализуется "процедура переобучения ECM", известная под названием "Computer
Relearn Procedures"3. Например, в памяти ECM записана "заводская установка" необходимости поддержания
времени впрыска топлива прогретого двигателя равного 3.0 мсек. Если после осуществления коррекции по напряжению кислородного датчика окажется, что необходимо открывать форсунки при прогретом двигателе импульсами напряжения длительностью 3,3 мсек, то при следующих поездках БУ "начнет" регулировку с этого значения.
Влияние топливного баланса на количество подаваемого топлива
Топливный баланс (FT-Fuel Trim) — параметр, который показывает (в процентах) на сколько необходимо изменить длительность подачи топлива, для поддержания оптимального состава смеси (14.7:1). При использовании нескольких датчиков кислорода, система впрыска различает этот параметр для каждого из них. Кроме этого, используются два различных по сути значения этого параметра.
Долговременный топливный баланс (Long Fuel Trim — LFT) характеризует величину изменения базового значения состава смеси, которое произведено для её оптимизации. Этот параметр – результат адаптации системы управления к состоянию двигателя, его систем и компонентов. Например, некоторое снижение давления в топливной системе, негерметичность системы впуска или загрязненность форсунок влекут за собой коррекцию в сторону обогащения смеси.
Положительное значение соответствует обедненной смеси и увеличению подачи топлива. Отрицательное – уменьшению. Диапазон изменений этого параметра составляет ±20%. Этот параметр входит в состав "потока данных" (Data Stream) при сканировании инжекторных систем.
Долговременный топливный баланс (LFT), в отличие от кратковременного (Short Fuel Trim — SFT), — это коррекция, которая остается в памяти, и после выключения зажигания, и это есть характеристика базового времени подачи топлива.
Кратковременный топливный баланс (SFT) — дополнительная и временная коррекция базового состава смеси, которая учитывает изменения напряжения кислородного датчика или тока его чувствительного элемента, то есть "уточняет" состав смеси в настоящий момент. Нормальный диапазон этого параметра составляет ± 20%. При исправной системе он редко больше чем ± 10%.
Если базовая продолжительность подачи топлива приводит к бедной смеси, то баланс SFT откликается положительной коррекцией (от +1 до +20 %), с тем чтобы увеличить подачу топлива и обогатить смесь. Если базовая длительность слишком велика, то параметр SFT реагирует на это отрицательной коррекцией состава смеси (от -1 до -20 %) для уменьшения количества топлива (обеднения смеси). Когда этот параметр находится в диапазоне ± 0%, то это является признаком нейтрального состояния, при котором состав близок к стехиометрическому. Если изменения SFT существенно отличаются от ±10%, то коррекция LFT изменяет базовую длительность впрыска топлива. В результате этого диапазон изменения SFT вновь становится равным ±10%.
В отличие от SFT, которое определяет продолжительность впрыска топлива только в режиме замкнутой обратной связи, параметр LFT корректирует поправочный коэффициент базовой продолжительности впрыска топлива и при разомкнутой обратной связи. В некоторых системах значения LFT сохраняются в энергонезависимой памяти (NVRAM nonvolatile RAM) и не "обнуляются" при отключении аккумулятора. В этом случае ЕСМ "помнит" текущее значение коррекции и при следующих поездках использует сохраненные данные. Но при этом процесс "переобучения" продолжается.
При проведении диагностики с помощью сканеров в автомобилях прошлых лет (pre- OBD II), параметр LFT отображаются как Target A/F
При диагностике Toyota обычными инструментальными средствами значение LFT (Learned Voltage Feedback — LVF) можно проверить измеряя напряжение на контакте VF1 диагностического разъема DLC No.1.
Для лучшего понимания рассмотрим пример адаптации системы к возможному изменению ее
состояний (рис. 3).

Пример #1. Представлены параметры исправной топливной системы. Базовая длительность при
указанной нагрузке и частоте вращения коленчатого вала составляет 3.0 мсек. SFT изменяется в диапазоне
±10%, выходное напряжение датчика кислорода переключается нормально. Система исправна и не требует вмешательства.
Пример #2. Представлены параметры при возникновении негерметичности впускного коллектора
("подсос" воздуха). Так как нагрузка на двигатель не изменилась, то базовая длительность по-прежнему составляет 3.0 мсек.
• Дополнительный воздух обедняет смесь, поэтому уменьшается выходное напряжение
кислородного датчика.
• SFT безуспешно пытается исправить это положение, но достигает предела +20%.
• ЕСМ "узнает", что необходимо осуществить коррекцию в сторону увеличения базовой продолжительности впрыска топлива (LFT) для того, чтобы выходное напряжение датчика кислорода находилось в допустимом рабочем диапазоне.
Пример #3. Показан результат того, что ЕСМ изменил LFT на +10 %. Хотя нагрузка и частота не изменились, базовое время впрыска топлива теперь составляет 3.3 мсек.
• В этом состоянии система впрыска поставляет достаточно топлива, чтобы восстановить почти нормальное переключение напряжения датчика кислорода. Переключения происходят, но диапазон напряжения кислородного датчика смещен в зону обедненного состава смеси. Для устранения этого состояния требуется все еще чрезмерная коррекция (SFT = +15 %).
• ЕСМ проводит долговременную коррекцию базовой длительности впрыска (LFT) для того, чтобы параметр SFT снова был в диапазоне ±10%.
Пример #4. Описывает результат дальнейшего изменения LFT. Нагрузка и частота вращения коленчатого вала остались без изменения (как и в примере #1), но базовая продолжительность впрыска топлива увеличилась на 20 % и теперь стала равной 3.6 мсек.
• Базовая длительность подачи снова в пределах ±10% от заданного времени впрыска.
• Нормальные переключения датчика кислорода сопровождаются изменениями SFT ±10% от базовой продолжительности подачи топлива.
Таким образом, в результате адаптации системы впрыска к реальному состоянию системы, состав смеси становится оптимальным. В том случае, когда ЕСМ не в состоянии обеспечить необходимый состав топливно-воздушной смеси, в его память записываются коды неисправности:
P0171 System too Lean (Bank1)
P0172 System too Rich (Bank1)
P0174 System too Lean (Bank2)
P0175 System to Rich (Bank2)
Достаточно интересно влияние некоторых "непрямых" воздействий на базовую длительность впрыска. Например, отмечено уменьшение значения этого параметра после промывки форсунок. Не менее интересна реакция системы впрыска на регулировку опережения зажигания. После установки правильного начального угла опережения зажигания наблюдается уменьшение времени впрыска на холостом ходу прогретого двигателя.
www.drive2.ru
DealerGM › Блог › Долгосрочная подстройка топлива, долгосрочная коррекция, P-0170, P-0171 , P-0172 , P-0174, P-0175 -как с этим бороться и пр.
Думаю здесь надо начать разговор о качестве смеси, какая она должна быть, что её регулирует, ну и кто все же отслеживает и зажигает нам неисправность, в тяжелых случаях даже не дает ехать в связи с потерей мощности ДВС.
Правильная топливо воздушная смесь должна иметь соотношение 14,7 : 1, при данном составе топливной смеси долгосрочная коррекция топлива составит 0%, это идеальное состояние двигателя. Для нормальной работы двигателя вполне устроит и параметр в 5-8%, как в сторону обогащения так и в сторону обеднения смеси. Выше это уже неисправность требующая к себе внимания и действий, причем предел регулирования топливной системы блоком управления двигателем у каждого производителя может разнится, так же например зависит и от типа ДВС. В пример приведу программное обеспечение блоков GM: корректировка по топливу может составлять до плюс-минус 20%. Это тот диапазон, в рамках которого компьютер может варировать количество поступающего топлива через форсунки в камеры сгорания, а для двигателей с непосредственным впрыском в камеру сгорания эти рамки уменьшены до плюс-минус 12.5%.
Как только величина топливной корректировки начинает превышать 12.5%, блок «понимает», что «так дальше жить нельзя» и «перестает бороться» — зажигает на панели приборов CHECK DTC P017*.
Дак кто же отслеживает нашу неисправность, кто этот гуру который знает, что происходит у нас в камере сгорания? А контролером тут выступает лямбда зонд, наш датчик кислорода находящийся до катализатора постоянно регулирует топливо подачу при помощи внесенной в блок управления (ECM) программы.
Когда же считать наш автомобиль неисправным, когда корректировка выросла выше 10% или только после того как загорелся чек? Тут объяснение простое чек загорится когда у коррекции кончится предел, а загорается он, не потому что блок управления хочет спасти ваш ДВС а только из экологических соображений, вы батенька загрязняете экологическую среду. Поэтому действия по устранению неисправности можно начинать до появления CHECK, если ваши коррекции убежали за 8% -приступайте. Почти во всех случаях можно добиться идеального результата плюс-минус 1-2%
Пора приступать к ремонтам. Во первых необходимо обратить внимание на сопутствующие ошибки, если это например: клапан регулировки фаз, неверное соотношение валов, пропуски зажигания, лямбда зонды (на тот который после катализатора можно не обращать внимания он отслеживает только работу катализатора, но надо быть уверенным, что пропускание выхлопа каталитический нейтрализатор не затруднено), некорректные показания датчика температуры охлаждающей жидкости и пр. — устраняем сперва их.
При LONG-коррекции в плюс проверяем:
— поступление «дополнительного» воздуха до камер сгорания (неплотные соединения, разрывы), так называемые подсосы воздуха, поск необходимо вести от ДМРВ до ГБЦ включая турбину и интеркуллер, автомобили без ДМРВ — от датчика температуры впускаемого воздуха (или дроссельной заслонки, что раньше стоит) до ГБЦ.
— работа топливного насоса, другие причины недостаточного давления топлива (фильтр, регулятор давления)
— пропускная способность топливных форсунок, в экране данных смотрим время работы инжектора
— выход из строя системы EGR, в результате чего в камеры сгорания поступает некорректная дополнительная порция воздуха/топлива
— некорректные показания MAF(MAP) – sensor «старение» сенсора, в результате чего происходит неправильное измерение прошедшего воздуха за единицу времени, выход сенсора из строя.
При LONG-коррекции в минус:
— «подсос» воздуха ДО датчика кислорода (лямбда зонда), в результате чего О2-sensor начинает «неправильно определять» наличие «свободного кислорода» в отработавших газах. Где сечет выпуск определить легко, описывать не буду.
— засорение воздушного фильтра. Помимо того что воздуха через него проходит мало, увеличивается разряжение во впускном коллекторе ведет к неправильной работе систем вентиляция бака и картерных газов, возможно закидывание маслом впуска.
— опять же, некорректные показания MAF(MAP) – sensor —
— давление топлива превышает допустимое значение, проверяем регулятор и его управление
— топливные форсунки «замороженности» срабатывания, или пропускание топлива в закрытом положении. Сопутсвующе может проявляться плохой запуск по утрам (чихание, долгая прокрутка стартером), сырые свечи.
Ну и + ко всем можно отнести — механические и остальные причины ( воспламенение и сгорание топливо-воздушной смеси становится некорректным в результате неправильного зазора в клапанах, «слабой» искры, «постаревшей» свечи зажигания. Выход из строя или нестабильная (неправильная) работа системы VVT-i, дроссельной заслонки, клапана EGR, изменяемая геометрия впускного коллектора, все последние сопровождаются обычно сопутствующими ошибками, с них и начинайте ремонт.
Как Выполнять ремонты по устранению: у некоторых пунктов я указал какие действия необходимо провести, остались нераскрытыми подсос воздуха во впуск, и выход из строя MAF или MAP. Работу обоих датчиков можно проверить, как при помощи диагностики сравнив данные на холостом ходу с данными в программе по ремонту производителя, или при помощи вольтметра на просторах сети легко найти данные рабочего датчика на все модели, ну и проверить датчик температуры работающим в паре с этими датчиками, таблиц в сети так же навалом.
Ну про подсос воздуха напишу подробно, как найти, т.к. процедура поиска у всех производителей одинаковая.
Искать на слух практически бесполезно, тем более на современных авто шлангов и патрубков подключенных к впускному коллектору навалом. Поиск проще всего производить промышленным или автомобильным дымо-генератором,

Очень просто, присоединяем на любой штуцер впускного коллектора, на впуск сняв патрубок с воздушного фильтра ставим заглушку (можно использовать несколько целлофановых пакета натянув их на патрубок и с хомутом обратно одеть на корпус фильтра), дуем отверстие обязательно себя проявит, если оно очень маленькое, наполняем коллектор дымом далее снимаем устроиство и давим сжатым во духом 2 бар будет достаточно. При отсутствии дымо-генератора модно его изготовить, в сети умельцев много — электронная сигарета и пр. Признаюсь у меня на работе тоже самодельный, сделал сам, а работаю я на оф. дилере — смешно)).
При отсуцтвии дымо-генератора, нам понадобится распылитель и немного бензина. Я на работе использую очиститель тормозов так называемый Брэйк клинер — он более летучий, не оставляет следов и запаха, горит злее.


На заведенной машине аккуратно поливаем впускной коолектор из спрея, проходим все прилегающие шланги, когда наша смесь проидет возле отверстия обороты двигателя самопроизвольно возрастут, где это происходит там и отверстие, чем дальше от гбц тем дольше будет пауза перед поднятием оборотов, например если пробит интеркуллер и поливать в его районе задержка примерно 2-4 секунды. Опять же если отверстие очень мало можно усилить эффект всасывания попросив кого нибудь подержать обороты ДВС повыше, держать их ровно педалью акселератора. Так например на днях я искал подсос воздуха на HUMMER2 не применяя дымо-генератор, машина после установки газового оборудования в шараш сервисе видимо, почти сразу после инсталяции стала хандрить, в коллектор внедряли форсунки вставлены убого на клей, но герметично.

Нашел, обороты моментально подскакивали когда проходил спреем вдоль прилегания коллектора к одной из ГБЦ, мною были заказаны новые прокладки, шли 2 недели, но после разбора оказалось что дело не в прокладках.


Отчаянные газовщики, не знаю зачем, может задрали плоскость или ещё че там их побудило, в общем убили плоскость прилегания, толи рашпилем они шлифовали, толи об асфальт, стену в падике. В общем бывает и такое, коллектор решили заменить.




Но факт остался фактом, минимальный подсос был найден при помощи простого спрея, а был он именно по рискам от чьих то стараний, так как отклонение в плоскости прокладка с резиновой вставкой способна предотвратить. LONG был +15%.
Все проверки описанные выше должны входить в диагностику, кроме тех которые требуют разбора (снятие бака, насоса, форсунок и пр). Не платите за дианостику, если вам сказали код ошибки но не сказали причину, это была не диагнотика а чтение кодов, а читистов развелось массы, читают что делать не знают, за чтение 300р. не более.
Ну все, я заканчиваю, ставте лайки, берегите своих коней.
www.drive2.ru
Долгосрочная коррекция — Skoda Octavia, 1.8 л., 2008 года на DRIVE2
Друзья, всем доброго времени суток!
С наступлением теплых дней обратил внимание, что у меня подрос расход бензина где-то на 0,5-0,8 литра на сотню. Катаюсь в основном по трассе на работу и домой, но в середине пути успеваю постоять в пробке минут 5 — 10, проезжая славный город Солнечногорск. В среднем дорога занимает минут 40 — час.
Если зимой я прибывал к месту прибытия и видел цифры 7,4 — 8,0, то сейчас 7,9 — 8,7. С чем может быть связано да хрен его разберет. Езжу вроде так же, больше 120 обычно не гоню, бывает на обогнах притоплю, но это уж кому с кем не бывает, но в основном это пенсионерско — расслабленный режим.
Так вот я о чем… Решил компутер подключить к мозгам шкоды. И что собственно увидел — долгосрочная коррекция переваливает за 9%. Проверил сначала EasyOBD

Полный размер
Затем MotorData в разных режимах:

Полный размер

Полный размер

Полный размер
Ошибок никаких нет. Последний сброс производился 28 тысяч км назад — осенью это было.
Пропусков зажигания так же нет в сохранениях.
Свечи так же повествуют о богатой смеси: светлые электроды и черная юбочка.

Полный размер
Записал видео-лог :
Перед тем как обратить на данную вещь внимание, проводил стандартное ТО: замена резины, масла, свечки, кстати, поменял, фильтра, ну и прочие не связанные с ездой вещи…
Первые мысли навскидку:
— форсунки мыть надо
— подсос воздуха за ДМРВ
— катализатор дохнет (на второй лямбде, кстати, значение соответствует слегка обогащенной смеси)
— ну или первая лямбда просится на покой.
Так что буду рад услышать ваши мнения на данную тему, а если они будут еще и подкреплены весомыми аргументами, то это будет абсолютно великолепно!
www.drive2.ru
Коррекция подачи топлива по лямбда зонду. Закрытый режим.
Администратор
122304
В интернете мне очень часто попадаются криво переведенные статьи о трактовке показаний различных датчиков, причем их репостят все подряд без разбора и тем самым еще больше путают народ. Поэтому я нашел и перевел правильную статью о топливной коррекции (Fuel Trim), постарался сделать это близко к тексту но не теряя при этом смысл, поэтому местами я дополнял перевод своим текстом. Итак, поехали.
На форумах часто задают вопросы по поводу топливной коррекции и у меня даже есть некоторое количество электронных писем с просьбами осветить этот вопрос. Многие отмечают топливную коррекцию PIDS (идентификаторы параметра) на показаниях в реальном времени (datastream) своих сканирующих устройств и интересуются для чего она.
Итак, что такое топливные коррекции и что они делают? Надеюсь мы сможем прояснить все недопонимания. Правильное понимание топливных коррекций может привести к ускорению диагностики и предупредить вас о будущих проблемах с вашим автомобилем.
В основе своей топливные коррекции – процент изменения в топливоподаче во(по) времени. Для того, чтобы двигатель работал хорошо соотношение воздух/топливо должно оставаться в границах небольшого окна 14.7/1. Такое соотношение должно сохраняться в этой зоне под воздействием всех изменяющихся условий с которыми двигатель сталкивается каждый день: холодный пуск (хотя по мне на холодном пуске явно не 14.7/1, но это оставим на совести автора), холостой ход в условиях длительных движений в пробках при движении по трассе и т.д.
Итак, компьютер двигателя пытается сохранить правильное соотношение воздух/топливо посредством точной настройки количества топлива поступающего в двигатель. В то время, как добавляется или уменьшается подача топлива, кислородный датчик следит за тем сколько кислорода в выхлопе и сообщает об этом ЭБУ. Кислородные датчики могут быть представлены как глаза ЭБУ, которые следят за смесью кислорода в выхлопе. ЭБУ следит за этими входными данными от горячих кислородных датчиков безостоновочно в замкнутом цикле. Если кислородный датчик информирует ЭБУ, что выхлопная смесь бедная, ЭБУ добавляет топливо путем увеличения времени открытия форсунки, для компенсации. И наоборот, если датчик кислорода информирует ЭБУ о том, что выхлопная смесь богатая, ЭБУ уменьшает время открытия форсунок, уменьшая тем самым подачу топлива для уменьшения обогащения смеси.
Эти изменения – добавление или уменьшение подачи топлива – называются Топливной Коррекцией или Fuel Trim. На самом деле, хоть датчики и называются кислородными, показывают они состояние топливной смеси. Изменения в напряжении кислородного датчика вызывают прямые изменения топливной смеси. Кратковременная топливная коррекция (STFT) относится к мгновенным изменениям топливной смеси – несколько раз в секунду. Долгосрочная топливная коррекция (LTFT) показывает изменения топливной смеси за длительный промежуток времени на основе показаний кратковременной коррекции (среднее значение за длительное время). Отрицательная топливная коррекция (отрицательные значения по сканеру) свидетельствует об обеднении смеси, а положительная топливная коррекция об обогащении соответственно. (Т.е. если лямбда постоянно видит бедную смесь, то она постоянно обогащает и это отразится на LTFT плюсовыми значениями).
Представим себе такую ситуацию – вы едете от пляжа, который на уровне моря в горы. За короткие промежутки времени вы можете несколько раз подниматься и опускаться вверх-вниз по холмам. Однако на длительном промежутке времени вы на самом деле плавно поднимаетесь от самой низкой точки горы до ее вершины, т.е. едете постоянно вверх, несмотря на временные перепады. Так можно представить себе краткосрочную и долгосрочную коррекции. STFT – кратковременные подъемы и опускания, а LTFT – то, что происходит за длительный промежуток времени в итоге.
Нормальные значения кратковременной коррекции STFT вообще будут колебаться между небольшими положительными и отрицательными значениями 2-3 раза в секунду. Обычно они держатся в районе 5% в плюс и минус, но они могут иногда приближаться и к 8-9% в зависимости от КПД двигателя, возраста и степени износа компонентов и иных факторов. Нормальная долгосрочная коррекция должна сохраняться неизменной показывая состояние топливной смеси. Ее значения должны быть близки к 0% или в окресности 5-9%, однако они тоже могут колебаться но уже на более длительных промежутках времени, а могут и принимать статическое(постоянное) значение.
Нормальная кратковременная коррекция
Если вы видите при проверке двузначные значения STFT и LTFT, это свидетельствует о ненормальных уровнях обогащения или обеднения смеси. Это может быть по причине льющих форсунок, утечек или подсосе воздуха или иных подобных причинах. Например, если кислородный датчик считывает бедную смесь, можно говорить о «вакуумной утечке» (подсос воздуха имеется ввиду), ЭБУ будет компенсировать это путем добавления топлива.
Обедненная смесь. Идет ее обогащение системой машины.
Краткосрочная топливная коррекция STFT начнет немедленно увеличиваться, чтобы показать, что компьютер добавляет топливо. Когда компьютер добавляет топливо, это становится заметно кислородному датчику и он следит таким образом до тех пор, пока кислородный датчик не покажет, что смесь больше не бедна и правильное соотношение топливо/воздух достигнуто. ЭБУ будет поддерживать повышенное добавление топлива до тех пор, пока подсос воздуха не будет устранен. Диагностический прибор при этом будет показывать положительные двузначные значения STFT, что будет свидетельствовать о том, что ЭБУ добавляет слишком много топлива для нормальной работы двигателя. Через некоторое время LTFT будет также показывать это увеличение как долгосрочное (постоянное на долгом промежутке времени). А если подсос воздуха слишком большой, то компьютер не сможет добавить достаточно много топлива, чтобы сбалансировать смесь и достичь правильного соотношения воздух/топливо. Корректировка достигнет своего максимального значения, обычно это 25%. Затем выскочит код ошибки, говорящий о том, что двигатель работает на слишком обедненной смеси (ошибка P0171 или P0174) и максимальный порог возможной кратковременной коррекции STFT уже превышен. И обратная ситуация будет, если двигатель будет работать на сверхобогащенной смеси из-за утечки топлива (например льют форсунки), появятся ошибки P0172 или P0175.
Обогащенная смесь. Идет ее обеднение мозгами машины.
Имейте ввиду, что компьютер не имеет представления о том исправен ли кислородный датчик и дает ли он правильные значения! В некоторых случаях все бывает наоборот, если датчик неисправен! Например, если датчик O2 показывает чрезмерно богатую смесь по причине своей неисправности, компьютер полагаясь на показания датчика начинает ее обеднять. Это называет «ложно обогащенное состояние». Компьютер будет обеднять смесь опираясь на свои настройки и может выдать коды ошибок P0172, P0175. Эти коды будут указывать на переобогащенную смесь, однако она при этом будет на самом деле переобедненной.
Если вы будете ориентироваться на коды, возникающие в результате таких ложных состояний смеси и не сопоставите это все со всеми данными по кислородным датчикам (и от себя добавлю – обязательно смотрите на внешний вид налета на электродах свечей), то вы можете поставить неверный диагноз.
Также, на V-образных моторах на каждом выпускном тракте каждой из голов обычно стоит свой кислородный датчик и идет своя топливная коррекция для каждой головы (показания по Bank 1 и Bank 2). Если у вас 4х-цилиндровый двигатель, то у вас всего один банк данных – Банк 1. На V-образных моторах в этом смысле поудобнее по причине того, что если лямбда с одной стороны неисправна и врет вы можете сузить круг потенциальных причин проблемы ориентируясь на показания второго банка данных – Bank 2.
Всем удачи и правильных подходов к диагностике!
С уважением, перевод предоставлен коллективом мастерской Works-Garage.
Works-Project.ru
www.beworks.ru
Топливная балансировка, часть 1
"Long Term Fuel Trim", "Short Term Fuel Trim",- именно об этом данная статья...
Да, что и говорить : в прошлом веке (лет 5-8 назад) диагностировать и ремонтировать автомобили было намного проще и легче. Ну что, например, стоило определить и «отремонтировать» неисправность датчика температуры двигателя? Да и самих кодов неисправностей в таблице DTC было немного, десяток или чуть более…
А сейчас? Десятки, а то и сотни кодов неисправностей. И уже не обойтись знанием одной лишь «глубокой электроники», надо «влезать» в совершенно «посторонние» для электроники науки : например, прекрасно разбираться в «грязной» механике (а как оно все там внутри крутится?), знать и понимать закон Паскаля (жидкость давит во все стороны – одинаково?), иметь так называемое «сознание Диагноста», которое через определенное количество лет работы становится «трехмерным», потому что без этого невозможно двигаться вперед в своем развитии и будет невозможным как и понять, так и осознать такие,например, понятия, как:
LONG TERM FUEL TRIM,
SHORT TERM FUEL TRIM,
FUEL TRIM
(в дальнейшем для простоты общения : LTFT, STFT, FT).
Да, именно о DTС P0170 (в основном применительно к GDI) и пойдет речь.
«Неисправность системы топливоподачи»,-так читается этот код неисправности.
В нем возможные неисправности описаны таким образом:
Давление топлива не соответствует норме
Неисправность системы топливоподачи
Неисправность переднего кислородного датчика
Неисправность датчика температуры воздуха во впускном коллекторе
Неисправность датчика абсолютного (барометрического ) давления
Неисправность датчика расхода воздуха
Неисправность электронного блока управления двигателем МКПП
Неисправность электронного блока управления двигателем и АКПП
Эти семь позиций неисправностей в дальнейшем можно расширить, потому что данный код «ремонтируется» правильно исключительно «через» сканер по Data stream (например, MUT2) по следующим позициям :
Long Trim B1
Short Trim B1
На «шестерках» (V-образных двигателях) добавится еще две позиции:
Long Trim B1
Short Trim B1
Long Trim B2
Short Trim B2
Но для начала постараемся разобраться в этом понятии: «Fuel Trim».
Оно пришло в жизнь Диагностов вместе с датчиком кислорода и нормами токсичности EURO. Перевести это выражение после понимания всего процесса можно как :
«Топливная Адаптация»,
«Топливная Корректировка»,
«Топливная Балансировка».
Кому и как нравится.
В некоторых Инетовских статьях приводится другой перевод: «Топливная урезка», «Балансировка состава смеси», но это не совсем правильно, потому что первый перевод практически ничего не отражает в данном процессе ( топливо не только «урезается», если уж так говорить, но и «прибавляется», а «балансировка смеси» тоже «не в точку», потому что смесь – это и воздух и топливо, а STFT(LTFT) – это только регулировка «по топливу», потому что ECU может изменять только количество топлива «через» время (длительность) открытия форсунок, основываясь на показаниях множества датчиков (сенсоров). И только в зависимости от этого в дальнейшем и будет изменяться состав топливо-воздушной смеси.
Fuel trim бывает долгосрочной (LTFT) и краткосрочной (STFT), но эти две корректировки всегда сосуществуют вместе, потому что Long Term полностью зависит от Short Term (основывается на его показаниях) и без него просто невозможен.
Посмотрим на дисплей сканера :
фото 1 фото 2
Мы сразу взяли наиболее сложный вариант: V-образный двигатель системы MPI, где имеется два выпускных коллектора и «балансировка по топливу» наиболее наглядная
(и наиболее сложная как и по регулировке, так и по пониманию ее).
На первый взгляд строчки на дисплее крайне непонятные!
Но - разберемся?..
Фото 1.
В принципе, можно сказать, что данный двигатель «практически не имеет проблем»,
у него только – «проблемки»…
Позиции 81 и 82 отображают состояние корректировок в цилиндрах 1-3-5 (то есть,правая сторона двигателя), а позиции 83-84 в цилиндрах 2-4-6 (левая сторона).
Начнем с того, что «как все быть – должно».
Идеальным вариантом были бы показания, которые близки к 0%.
То есть, если бы мы имели:
Long Trim B1 – 0%
Short Trim B1 – 0%
Long Trim B2 – 0%
Short Trim B2 – 0%
,- то это было бы просто сказкой и на такой двигатель надо просто молиться!
Это идеал, к которому и «стремится» ECU при своей работе по Fuel Trim.
Ранее мы сказали по фото 1, что двигатель «практически не имеет проблем».
Да, если посмотреть на фото 2, то отличия заметны, но отличия – в лучшую сторону, несмотря на то, что некоторые «циферки» на позициях 82-84 намного увеличились.
Начнем «раскрывать секреты» ?
STFT (Short - коррекция) – это кратковременная топливная корректировка, то есть, корректировка в данный момент, на данном этапе (промежутке) времени, что мы и определяем по Data Stream.
На фото 1 мы видим, что она составляет (позиция 82) – «минус» 0.8%.
И здесь надо приостановиться!
Если у нас «минус», то это совсем не означает, что «все идет в минус», то есть, и «топливо идет в минус», обедняется, нет.
Зависимость здесь обратно-пропорциональная.
Если мы видим «минус», то это означает «обогащение».
И наоборот: если «плюс» (который на дисплее не показывается, просто пишется, например, на фото 2 , позиция 82 – 17.2%), то это означает «обеднение» топлива.
«Обогащение» - это сколько прибавлено топлива к идеальной величине в 0%
«Обеднение» - сколько топлива «урезано» от идеальной величины в 0%.
«Идеальная величина» - это состав топливо-воздушной смеси = 14.7:1, то есть 0%
Если LTFT со знаком «+», это означает :
«Недостаточное количество топлива или избыток количества поступающего(измеренного) воздуха».
Если LTFT со знаком «-», это означает :
«Избыточное количество топлива или недостающее количество поступающего (измеренного) воздуха».
Если в течении длительного промежутка времени STFT (краткосрочная коррекция) остается неизменной, то тогда ECU начинает изменять величину LTFT ( длительной коррекции).
Принято считать понятие : «длительный промежуток времени» = 10 секундам
(плюс-минус).
Long – коррекция изменяется не большими скачками, нет.
ECU меняет длительность впрыска топлива (время открытия инжекторов) плавно, по 0.01ms.
Продолжение в части №2
autodata.ru
Система управления двигателя 1,5 TSI Skoda Karoq
Система впрыска Bosch MG1 используется на автомобилях Skoda Karoq c двигателями 1,5 л TSI (буквенное обозначение двигателя: DADA).
Расшифровка обозначения Bosch MG1:
B = Bosch.
M = Motronic.
G = Gasoline (бензин).
1 = 1-е поколение.
Схема системы Bosch MG1
Двигатели 1,5 л 96/110 кВт TSI
Блок управления двигателя J623
На двигателях 1,5 л семейства EA211 EVO применяется блок управления двигателя последнего поколения с системой управления Bosch MG1. В 154-контактном блоке управления двигателя установлен 32-битный двухъядерный процессор с тактовой частотой 300 МГц. Этот процессор выполняет задачи управления и регулирования в различных режимах работы. Это обеспечивает высокую эффективность двигателя.
Стратегия впрыска
В то время как на двигателях EA211 топливо впрыскивалось до трёх раз за рабочий цикл, у двигателей 1,5 л EA211 EVO за такты впуска и сжатия выполняется до пяти впрысков. Это происходит прежде всего при прогреве двигателя для сокращения выбросов твёрдых частиц. За счёт такого разделения общего впрыскиваемого количества топлива оптимизируется смесеобразование.
Режим работы | Число впрысков | Пояснение |
Пуск двигателя | 1 | При пуске двигателя производится один впрыск на такте впуска. |
Разогрев нейтрализатора | В зависимости от запрограмми рованных параметров от 1 до 5 | При многократном впрыске для разогрева нейтрализатора производится до пяти впрысков. Многократный впрыск обеспечивает стабильную работу двигателя при малых углах опережения зажигания. Вследствие позднего сгорания на нейтрализатор воздействуют повышенные температуры ОГ и увеличенные массовые потоки ОГ. Нейтрализатор разогревается быстрее. Всё вместе приводит к снижению выбросов вредных газов и расхода топлива. При первом впрыске во время такта впуска впрыскивается большая часть топлива. Благодаря этому обеспечивается равномерное приготовление топливовоздушной смеси. |
Прогрев двигателя | В зависимости от запрограмми рованных параметров от 1 до 5 | При многократном впрыске для прогрева двигателя производится до пяти впрысков. Поскольку в каждой порции впрыскивается мало топлива, оно испаряется почти полностью и в цилиндре происходит очень хорошее смесеобразование со свежим воздухом. Кроме того, детали в камере сгорания смачиваются топливом лишь в очень малой степени. Выбросы несгоревшего топлива сокращаются. |
Нормальный режим, двигатель прогрет | В зависимости от запрограмми рованных параметров от 1 до 3 | При многократном впрыске в нормальном режиме работы производится от одного до трёх впрысков в зависимости от запрограммированных параметров. |
Цикл Миллера
Процесс сгорания имеет решающее значение для повышения КПД двигателя. Хотя прежние двигатели TSI и так уже достигают очень высокой эффективности, применение цикла Миллера на двигателе 1,5 л 96 кВт TSI обеспечивает существенное дополнительное повышение КПД.
Основные сведения о цикле Миллера
Особенность цикла Миллера в том, что впускные клапаны в зависимости от запрограммированных параметров закрываются ещё задолго до достижения поршнем нижней мёртвой точки (НМТ). Большое преимущество этого в том, что при движении поршня к нижней мёртвой точке закрытая смесь расширяется и от этого остывает. Это приводит к снижению конечной температуры цикла сжатия, и степень сжатия можно повышать.
Преимущества цикла Миллера в сравнении с обычными рабочими циклами
– За счёт более холодной смеси снижается конечная температура цикла сжатия, а с ней и склонность к детонации. Степень сжатия можно повысить до 12,5 : 1, что приводит к увеличению термического КПД и более эффективному сгоранию топлива.
– Времени на впуск в цилиндр необходимой массы воздуха стало меньше, поэтому в режиме частичной нагрузки дроссельная заслонка открывается шире, улучшая газообмен в цилиндрах.
– Увеличение рабочего объёма уменьшает работу сжатия.
– Благодаря более холодной смеси сокращается детонационное сгорание в режиме полной нагрузки, что позволяет двигателю работать со значением лямбда 1 в широком диапазоне крутящего момента/нагрузки.
Фазы газораспределения
На приведённом ниже графике показано сравнение фаз газораспределения у двигателя 1,5 л 96 кВт TSI с циклом Миллера и у двигателя 1,5 л 110 кВт TSI с обычным рабочим циклом.
Основные данные впускных и выпускных клапанов
Двигатель 1,5 л 96 кВт TSI | Двигатель 1,5 л 110 кВт TSI | |
---|---|---|
Фаза открытия впускных/выпускных клапанов | 150°/180° | 194°/180° |
Ход впускных/выпускных клапанов | 7,2 мм/9,0 мм | 9,0 мм/9,0 мм |
Регулирование фаз газораспределения впускных клапанов | 70° поворота коленвала | 70° поворота коленвала |
Регулирование фаз газораспределения выпускных клапанов | 40° поворота коленвала | 40° поворота коленвала |
Фазы газораспределения двигателей 1,5 л 96/110 кВт TSI
Условия для применения цикла Миллера
Из-за раннего закрытия, короткой фазы открытия и меньшего хода впускных клапанов остаётся совсем мало времени на наполнение цилиндров достаточным зарядом воздуха. Чтобы это всё же удавалось, нужны высокое давление наддува и эффективное охлаждение наддувочного воздуха.
Турбонагнетатель с изменяемой геометрией турбины
С учётом низкой конечной температуры цикла сжатия на этом двигателе может применяться турбонагнетатель с изменяемой геометрией турбины.
Уже на низких оборотах он создаёт высокое давление наддува и, несмотря на короткие фазы открытия впускных клапанов, обеспечивает достаточное наполнение цилиндров двигателя свежим воздухом. Максимальное давление наддува у этого двигателя составляет около 2,3 бар (абсолютное значение), что примерно на 0,5 бар выше, чем у двигателя 1,4 л 92 кВт TSI.
Промежуточный охладитель наддувочного воздуха
Более высокое давление наддува, конечно, повышает и температуру наддувочного воздуха. Для максимально эффективного охлаждения этого воздуха применяется промежуточный охладитель новой конструкции. Он установлен перед впускным коллектором, блоком дроссельной заслонки GX3 и датчиком давления наддува GX26.
Преимущество такого расположения в том, что рабочая температура этих узлов снижается, а размеры и, следовательно, эффективность промежуточного охладителя можно значительно повысить. В отличие от охладителя на двигателе 1,4 л 92 кВт TSI конструкция стала более продолговатой, а входное сечение — квадратным.
Этот промежуточный охладитель способен снижать температуру наддувочного воздуха до уровня всего на 15 °C выше наружной температуры
Динамическая система старт-стоп с функцией движения накатом
В случае двигателя 1,5 л 96 кВт TSI с 7-ступенчатой коробкой передач DSG система старт-стоп была дополнена функцией движения накатом с динамической системой старт‐стоп, которая позволяет ещё
лучше использовать энергию движения автомобиля в так называемых фазах наката * и экономить топливо до 0,4 л/100 км. Прежде в фазах наката коробка передач DSG отсоединялась, а двигатель продолжал работать на холостом ходу. Теперь при движении накатом с динамической системой старт‐стоп двигатель выключается.
* Во время фазы наката водитель убирает ногу с педали акселератора и автомобиль катится по инерции.
Диапазон активности функций
Движение накатом с динамической системой старт-стоп с выключенным двигателем
Эта функция активна в диапазоне скорости от 40 до 130 км/ч. Если в этом диапазоне скорости двигатель выключается, он может оставаться выключенным вплоть до остановки автомобиля.
Накат с включённым двигателем и системой старт-стоп
Если функция движения накатом активируется при скорости от 15 до 40 км/ч, коробка передач DSG отсоединяется, но двигатель продолжает работать на холостом ходу. При скорости ниже 15 км/ч активна система старт-стоп.
Условия для движения накатом с динамической системой старт-стоп
– Должны быть выполнены условия для активации системы старт-стоп.
– Должен быть выбран профиль движения «Эко», «Обычный» или «Индивидуальный».
– Селектор находится в положении D.
– Педаль акселератора не нажата.
– Дополнительная АКБ функции движения накатом имеет достаточно энергии.
Повторный пуск двигателя водителем
Двигатель запускается нажатием педали акселератора или тормоза. Лёгкое притормаживание не приводит к повторному запуску.
Обзор системы
Для применения функции движения накатом с динамической системой старт‐стоп система старт-стоп
была дополнена 12-вольтовой литий-ионной аккумуляторной батареей и защитным диодом.
Дополнительная АКБ функции движения накатом A8
Если в режиме движения накатом с динамической системой старт‐стоп коробка передач DSG
отсоединяется, а двигатель выключается, питание бортовой сети автомобиля возможно только
от стартерной АКБ 12 В. Чтобы при этом обеспечивалось надёжное электропитание систем, важных с точки зрения безопасности, например электроусилителя рулевого управления, тормозной системы или системы освещения, установлена дополнительная АКБ.
Это 12-вольтовая литий-ионная батарея с номинальной ёмкостью 6,9 А·ч. Дополнительная АКБ с блоком силовой электроники находится под левым передним сиденьем. Она подключается только в режиме движения накатом с динамической системой старт‐стоп и питает бортовую сеть. Благодаря встроенному регулятору зарядки во время рекуперации она заряжается в первую очередь.
Защитный диод бортовой сети для функции движения накатом J1159
Защитный диод — это электронный ключ с интегрированной функцией диода. При работающем двигателе он закрыт, так что генератор может заряжать стартерную и дополнительную АКБ, а также снабжать током бортовую сеть автомобиля. В режиме движения накатом с динамической системой старт‐стоп, когда двигатель выключен, защитный диод открывается и бортовая сеть питается током от дополнительной АКБ.
Стартерная АКБ теперь служит только для последующего повторного пуска двигателя. Отсоединение цепи стартерной АКБ предотвращает недопустимые просадки напряжения в остальной бортовой сети и к тому же разгружает литий-ионную батарею. После запуска двигателя защитный диод снова закрывается.
Схема системы движения накатом с динамической системой старт-стоп
Условные обозначения
1 Аккумуляторная батарея A
2 Дополнительная АКБ функции движения накатом A8
3 Блок предохранителей A
4 Блок управления двигателя J623
5 Генератор с регулятором напряжения CX1
6 Блок управления для контроля АКБ J367
7 Защитный диод бортовой сети для функции движения накатом J1159
8 Стартер В
9 Диагностический интерфейс шин данных J533
10 12-вольтовые потребители, например рулевое управление, тормозная система, освещение
Контур высокого давления топливной системы
Контур высокого давления топливной системы устроен в основном так же, как у двигателей TSI семейства EA211. Однако впервые топливо впрыскивается под давлением до 350 бар. Вместе с улучшенным по форме факелом распыла форсунок с пятью отверстиями получается очень хорошее смесеобразование во всех режимах нагрузки и при любых оборотах. В результате уменьшаются расход топлива и токсичность ОГ, меньше топлива попадает в моторное масло, а также существенно сокращается выброс несгоревших частиц топлива.
Технические особенности
• Топливный насос высокого давления с клапаном дозирования топлива N290.
• Давление впрыска от 170 до 350 бар.
• Многократный впрыск (до пяти впрысков за цикл).
• Датчик давления топлива G247.
• Топливная рампа из нержавеющей стали.
• Форсунки с пятью отверстиями N30–N33.
Изменения в контуре высокого давления топливной системы
Топливный насос высокого давления
– Увеличенный до 3,75 мм ход плунжера насоса для быстрого создания давления при пуске двигателя и подачи необходимого количества топлива.
– Уменьшенный с 10 до 8 мм диаметр плунжера насоса для снижения нагрузки на распредвал.
– Снижение трения за счёт уменьшения диаметра роликового толкателя до 26 мм.
Форсунки
– Центровочный штифт для упрощения установки.
– Повышение прочности и снижение температуры дефлектора за счёт уменьшения диаметра распылителя до 6 мм.
– Индивидуально адаптированные диаметры пяти сопел для сокращения выброса несгоревшего топлива и уменьшения смачивания топливом камеры сгорания.
Датчики и исполнительные механизмы
Модуль расходомера воздуха GX35
На двигателе 1,5 л 96 кВт TSI применяется модуль расходомера воздуха. Он состоит из расходомера
воздуха G70 и датчика температуры в расходомере воздуха G1005. Модуль установлен во впускном
тракте после воздушного фильтра. Чтобы сигнал нагрузки двигателя был максимально точным,
в дополнение к датчику впускного коллектора применяется расходомер воздуха
с распознаванием обратного потока.
Он определяет не только массу поступающего в двигатель воздуха, но и сколько воздуха устремляется назад из-за открытия и закрытия клапанов. Температура воздуха на впуске служит в качестве корректировочного значения.
Использование сигналов
По сигналам адаптируется определение наполнения цилиндров датчиком впускного коллектора GX9.
Последствия отсутствия сигнала
При отказе расходомера воздуха сигнал датчика впускного коллектора GX9 используется в качестве сигнала нагрузки. При отказе датчика температуры применяется фиксированное резервное значение.
Модуль регулирования давления наддува GX34
Модуль регулирования давления наддува состоит из регулятора давления наддува V465 и датчика положения регулятора давления наддува G581. Он закреплён винтами прямо на турбонагнетателе. С его помощью регулируется давление наддува в двигателе.
– У двигателя 1,5 л 96 кВт TSI регулятор давления наддува поворачивает направляющие лопатки турбонагнетателя с изменяемой геометрией турбины.
– У двигателя 1,5 л 110 кВт TSI регулятор давления наддува изменяет положение перепускного клапана обычного турбонагнетателя.
Регулятор давления наддува V465
Назначение
Регулятор предназначен для регулирования давления наддува. Регулятор давления наддува с электроприводом обеспечивает быстрое регулирование и тем самым быстрое создание давления наддува.
Последствия при выходе из строя
При отказе регулятора давления наддува направляющие лопатки или перепускной клапан открываются либо под напором отработавших газов, либо с помощью регулятора давления наддува. В обоих случаях давление наддува не создаётся
Датчик положения регулятора давления наддува G581
Использование сигналов
Сигнал датчика даёт блоку управления двигателя информацию о текущем положении направляющих лопаток турбонагнетателя. Этот сигнал вместе с сигналом датчика давления наддува G31 даёт полную информацию о регулировании турбонаддува.
Последствия отсутствия сигнала
При отказе датчика регулятор давления наддува активируется и полностью открывает направляющие лопатки или перепускной клапан. В обоих случаях давление наддува не создаётся.
Модуль системы терморегулирования двигателя GX33
Модуль системы терморегулирования двигателя состоит из исполнительного механизма системы
терморегулирования двигателя N493 и датчика положения системы терморегулирования двигателя G1004. Он закреплён винтами на головке блока цилиндров со стороны маховика. С его помощью регулируется температура охлаждающей жидкости в двигателе. Тем самым обеспечиваются быстрый прогрев двигателя и оптимальная температура ОЖ в любых режимах работы.
Исполнительный механизм системы терморегулирования двигателя N493
Назначение
Этот механизм активируется ШИМ-сигналом блока управления двигателя. Через вал он приводит в действие поворотную заслонку, которая через зубчатый сегмент связана со второй поворотной заслонкой. Активация исполнительного механизма осуществляется в зависимости от нагрузки, частоты вращения и температуры ОЖ.
Последствия при выходе из строя
Если исполнительный механизм выйдет из строя, перемещение поворотных заслонок будет невозможным. Обе поворотные заслонки останутся в своём текущем положении. Если отказ случится в тот момент, когда обе поворотные заслонки закрыты, то возможен перегрев двигателя. Если в момент отказа обе поворотные заслонки будут полностью открыты, это может привести к более долгому прогреву двигателя или протапливанию салона.
Датчик положения системы терморегулирования двигателя G1004
Использование сигналов
С помощью сигнала датчика положения блок управления двигателя целенаправленно активирует исполнительный механизм.
Последствия отсутствия сигнала
Если сигнал датчика положения отсутствует, регулирование посредством исполнительного
механизма становится невозможным. Исполнительный механизм перемещает поворотные заслонки в положение полного закрытия.
Датчик температуры ОЖ на выходе из двигателя G82
Датчик температуры ОЖ на выходе из двигателя ввёрнут в блок цилиндров со стороны маховика. Он измеряет температуру охлаждающей жидкости в блоке цилиндров.
Использование сигналов
Сигнал используется для защиты двигателя от перегрева. Если температура ОЖ становится слишком высокой, вентилятор радиатора включается и работает, пока температура не снизится до нормального значения. Регулирование температуры ОЖ в двигателе осуществляется с помощью датчика температуры ОЖ G62 в головке блока цилиндров.
Последствия отсутствия сигнала
При отказе датчика температуры ОЖ на выходе из двигателя температура ОЖ определяется через
вычисление. В этом вычислении учитывается также сигнал датчика температуры ОЖ G62.
Датчик 1 давления ОГ G450
Датчик 1 давления ОГ ввёрнут в корпус распредвалов со стороны выпускного коллектора. Через канал он соединяется со встроенным выпускным коллектором и измеряет давление отработавших газов.
Использование сигналов
Сигналы используются для более точного определения наполнения цилиндров. По давлению ОГ блок управления двигателя определяет, сколько отработавших газов выходит из цилиндров. Это значение блок управления двигателя учитывает при определении наполнения цилиндров.
Последствия отсутствия сигнала
При отказе датчика давления в регистратор событий записывается ошибка.
Клапан 1 регулятора фаз газораспределения впускных клапанов N727
Клапан 1 регулятора фаз газораспределения впускных клапанов закреплён винтами на держателе манжетного уплотнения со стороны зубчатого ремня. Он активируется блоком управления двигателя с помощью сигнала с широтно-импульсной модуляцией (ШИМ-сигнала)
Принцип действия
При активации клапана регулятора фаз газораспределения в управляющем клапане приводится в действие плунжерный узел с обратными клапанами. Плунжеры открывают поток масла из одной камеры в другую, обратные клапаны предотвращают поток масла в обратном направлении. В зависимости от того, какой масляный канал открывается, внутренний ротор поворачивается в направлении «рано» или «поздно» или удерживается в исходном положении. Поскольку внутренний ротор привинчен к распредвалу впускных клапанов, распредвал тоже поворачивается соответствующим образом.
Положение распредвалов контролируется обоими датчиками положения распредвалов
Последствия при выходе из строя
Если клапан регулятора фаз газораспределения впускных клапанов выйдет из строя, регулирование фаз газораспределения станет невозможным. Распредвал впускных клапанов останется в положении «поздно», а распредвал выпускных клапанов — в положении «рано».
Крутящий момент двигателя снижается.
karoqs.ru
Вопросы связанные с настройкой. | Страница 337
При детектировании прокрутки двигателя производятся следующие действия:1. Включается бензонасос
2. РХХ устанавливается в Положение РХХ при пуске или в Положение РХХ при пуске холодного двигателя, если температура ОЖ ниже, чем Температура холодного пуска.
3. Выставляется начальный УОЗ = 0 гр.п.к.в. и начальная фаза, равная Фазе впрыска на пуске.
4. Производится асинхронный впрыск топлива, время открытия форсунок вычисляется по формуле:
Tinj = KFst * COEF * GTCA + KFd , где
Tinj - время открытия форсунок
KFst - Статическая производительность форсунки (количество топлива, подаваемого форсункой за 1 мс. при номинальном давлении).
COEF - коэффициент коррекции топливоподачи, выбирается из ОЗУ. Если был сбой ОЗУ (активна Ошибка КС ОЗУ), то COEF = Начальное значение коррекции времени впрыска.
GTCA - Асинхронная цикловая подача (количество топлива в мг. в пересчете на 1 рабочий цикл).
KFd - Динамическая производительность форсунки (добавочное время впрыска по напряжению, необходимо для компенсации запаздывания открытия форсунки относительно импульса управления).
Если двигатель не запустился с первой попытки, то при повторном пуске возможно отключение асинхронной топливоподачи в зависимости от установки флага Асинхронная топливоподача при повторном пуске.
5. Разрешается синхронизация по сигналу ДПКВ, через Время задержки синхронизации при пуске.
6. Инициализируется счетчик циклов двигателя.
После установки синхронизации производятся следующие действия:
1. Устанавливается УОЗ из таблицы УОЗ на пуске.
В режиме старта двигателя применяется алгоритм многоискрового зажигания (только в том случае, если обороты не превышают значения Обороты начала выхода из режима пуска, который обеспечивает более уверенное поджигание смеси. Этот режим определяется калибровками Число дополнительных искр на пуске и Интервал между искрами на пуске. В режиме многоискрового зажигания время накопления первого импульса формируется на основе двух периодов сигнала синхронизации с ДПКВ и не калибруется, а время накопления всех дополнительных искр определяется таблицей Время накопления для модуля зажигания.
Интервал между циклами накопления задается калибровкой Интервал между искрами на пуске. Таким образом, время между соседними искрами будет равно: Интервал между искрами плюс значение из таблицы Время накопления для модуля зажигания.
2. Расчет топливоподачи происходит по алгоритму:
Производится расчет количества топлива на 1 цикл как произведение следующих величин в зависимости от режима. Если обороты менее величины Обороты начала выхода из режима пуска, то вычисляется произведение следующих величин:
Tinj = KFst * COEF * GTC + KFd , где
Tinj - время открытия форсунок
KFst - Статическая производительность форсунки (количество топлива, подаваемого форсункой за 1 мс. при номинальном давлении).
COEF - коэффициент коррекции топливоподачи, выбирается из ОЗУ. Если был сбой ОЗУ (активна Ошибка КС ОЗУ), то COEF = Начальное значение коррекции времени впрыска.
KFd - Динамическая производительность форсунки (добавочное время впрыска по напряжению, необходимо для компенсации запаздывания открытия форсунки относительно импульса управления).
Величина цикловой подачи (GTC) вычисляется в зависимости от режимов:
a. Обороты двигателя меньше, чем Обороты начала выхода из режима пуска
Подача топлива меняется циклически, в зависимости от счетчика циклов:
GTC = GTCST (или GTCMIN) * KGTCTHR * KGTCFR * KGTCNR , где
GTCST - Большая цикловая подача
GTCMIN - Малая цикловая подача
KGTCTHR - Коррекция по дросселю
KGTCFR - Коррекция по RPM
KGTCNR - Коррекция по оборотам прокрутки
Общий период и длительность циклов малой и большой топливоподачи определяется калибровками: Число тактов с большей подачей и Пусковой период.
Таким образом, подача топлива меняется циклически:
NC1 - число тактов с большей подачей
NC2 - пусковой период
T1 - обороты превысили значение Обороты начала выхода из режима пуска, но меньше чем Обороты полного выхода из режима пуска
T2 - выход из режима пуска
b. Обороты двигателя больше, чем Обороты начала выхода из режима пуска, но меньше Обороты полного выхода из режима пуска
В этом случае производится переход на малую топливоподачу
GTC = GTCMIN * KGTCTHR * KGTCFR * KGTCNR , где
GTCMIN - Малая цикловая подача
KGTCTHR - Коррекция по дросселю
KGTCFR - Коррекция по RPM
KGTCNR - Коррекция по оборотам прокрутки
Коррекция по дросселю служит для коррекции цикловой топливоподачи при открытии дросселя, а также для осуществления режима продувки залитого двигателя при больших углах открытия (обычно 55% или выше).
Коррекция по оборотам прокрутки уменьшает топливоподачу при длительной прокрутке, чтобы исключить заливку двигателя.
Для компенсации пониженного напряжения время накопления катушек зажигания рассчитывается по таблице Время накопления для модуля зажигания от напряжения. Таким образом, энергия искры поддерживается достаточно высокой во всем диапазоне напряжения бортсети.
Подача топлива при пуске - попарно-параллельная, в том числе и в системах с фазированным впрыском.
Особенности топливоподачи в режиме пуска в новом ПО (серия M).
В режиме "малой" топливоподачи не действует Коррекция по оборотам прокрутки, вместо нее используется дополнительная таблица: Коррекция малой подачи по температуре.
Таблица коррекции по оборотам прокрутки работает только в режиме "большой" подачи и имеет другое квантование по оборотам (ось X) - 1 оборот вместо 8 (в старом ПО). Максимальное значение оборотов - 63, если прокрутка продолжается дольше, счетчик обнуляется и 64-й оборот считается нулевым.
turbobazar.ru
Топливная коррекция: коэффициент коррекции времени впрыска
Что такое топливная коррекция? Несмотря на существование понятия топливной коррекции задолго до появления инжекторных автомобилей, интерес к ее изучению автомобилистами возрос с ужесточением экологических требований к продуктам выхлопа двигателя внутреннего сгорания.
Понятие топливной коррекции
Способность системы двигателя поддерживать на разных режимах стехиометрический состав смеси путем регулирования подачи топлива – это и есть топливная коррекция.
Режимы работы двигателя обеспечиваются процессом смесеобразования паров бензина и воздуха при определенном соотношении их масс.
Бензин — легковоспламеняющаяся жидкость, являющаяся продуктом перегонки нефти и относится к классу углеводородного топлива. В своем составе содержит 85% углерода и 15% водорода. Пары бензина с воздухом образуют горючие и взрывные смеси, характер которых определяется весовым соотношением, парциальным давлением и температурой.
Наиболее важным показателем нормальной работы двигателя, при котором в цилиндрах его происходит химическая реакция, сопровождающаяся горением, является его стехиометрический состав смеси. Стехиометрический состав должен поддерживаться соотношением 14,7 частей воздуха и одной частью бензина. Именно при этом соотношении обеспечивается процесс горения топливной смеси. Соотношение 14,7:1 должно поддерживаться при различных условиях работы двигателя: запуск, холостой ход, движение в смешанном цикле (город-трасса).
Функция поддержки топливной смеси работает на карбюраторном двигателе в автоматическом режиме путем дозирования топлива сложным механизмом каналов и калиброванных жиклеров. Подготовка горючей смеси начинается в карбюраторе и заканчивается в цилиндре. Процесс подготовки смеси происходит непрерывно и также непрерывно изменяется соотношение масс воздуха и топлива. В зависимости от режима работы двигателя соотношение масс принимает различные значения, при которых смесь может быть богатой, обогащенной, нормальной, обедненной и бедной.
В бензиновом двигателе изменение режима работы двигателя производится путем подачи воздуха во впускной коллектор (на карбюраторном – первичную и вторичную камеру) и поэтому за основу расчета соотношения смеси принят коэффициент избытка воздуха α (альфа). Коэффициент α – это отношение действительного количества воздуха MR, находящегося в смеси, к количеству воздуха MT, теоретически необходимому для сжигания данного топлива:
α = MR/ MT.
Приведем пример, если количество воздуха в горючей смеси равно теоретически необходимому для полного сгорания топлива, т.е. 14,7 кг воздуха на 1 кг бензина, то α = 1 и смесь называется нормальной. Двигатель работает стабильно и экономно при сохранении умеренной мощности.
Вобогащеннойсмеси α=0,8-0,85 и на 1 кг бензина будет затрачиваться 11,76 кг воздуха, это на 15…20% меньше, чем в нормальной смеси. Скорость сгорания обогащенной смеси выше нормальной, но двигатель развивает наибольшую мощность при незначительном увеличении расхода топлива.
В богатойсмеси α=0,4-0,79 содержание воздуха на 20…60% меньше, чем в нормальной, или на 1 кг бензина количество воздуха находится в пределах от 5,88 кг до 11,75 кг. Скорость горения богатой смеси замедленная, при этом заметно ухудшается тяговая характеристика двигателя и значительно повышается путевой расход топлива.
В обедненнойсмеси с α=1,1-1,2 воздуха на 10…20% больше, чем в нормальной, т.е. количество воздуха составляет 16,17 — 17,64 кг. Обедненная смесь характеризуется низкой скоростью горения смеси с незначительной потерей мощности, при этом экономно расходуется топливо.
В бедной смеси α=1,21 — 1,30 воздуха содержится 20…30% больше, чем в нормальной. Горение бедной смеси замедленное и может сопровождаться сильными хлопками в впускной коллектор или глушитель. Двигатель работает неустойчиво, а путевой расход топлива повышается.
Топливная коррекция на инжекторном автомобиле
Блок управления во время работы двигателя, получая сигналы от датчиков, контролирует и регулирует правильное соотношение воздух — топливо путем точной настройки количества топлива. На современных автомобилях высокоточный контроль производится благодаря установленным кислородным датчикам, функционирующим по замкнутому контуру с датчиком массового расхода воздуха или датчиком абсолютного давления. Кислородные датчики можно сравнить с «глазами» блока управления. Именно эти датчики видят состояние выхлопа и мгновенно сообщают блоку о состоянии смеси.
Как это работает? Поступила информация от датчика кислорода о обедненной смеси выхлопных газов. Блок управления производит расчет и увеличивает подачу топлива повышая время длительности открытия форсунок. И наоборот, если датчик кислорода сообщил блоку об обогащении выхлопа, то мгновенно время открытия форсунки сокращается.
Таким образом, именно кислородные датчики определяют показания коррекции топлива.
Процесс добавления или сокращения топлива называется топливной коррекцией (Fuel Trim). В практической деятельности специалисты, при проверке двигателя называют топливную коррекцию текущим коэффициентом самообучения, который в то же время зависит от его составляющих: долгосрочной коррекции и краткосрочной. Указанные составляющие на разных автомобилях или при использовании мульти марочных сканеров разных производителей имеют свои определенные названия (обозначения).
Например:
Долгосрочная коррекция | Краткосрочная коррекция |
длительная коррекция | короткая коррекция |
аддитивная | мультипликативная |
Long Term Fuel Trim (LTFT) | Short Term Fuel Trim (STFT) |
обучение режима смешивания | интервал режима смешивания |
И это не полный перечень названий (обозначений) составляющих текущего коэффициента топливной коррекции в окне параметров сканера.
У производителей автомобилей и разработчиков диагностического оборудования различных марок отсутствует договоренность о единых обозначениях параметров – каждый назначает собственные сокращения.
Обозначим аддитивную составляющую коррекции самообучения Кад, а мультипликативную Кмульт. Аддитивная коррекция Кад отвечает за работу двигателя при минимальных оборотах холостого хода, мультипликативная Кмульт – при частичных нагрузках.
Рассмотрим более подробно функциональное значение этих составляющих.
Аддитивная топливная коррекция
Термин «аддитивный» произошел от латинского additio — прибавляю, относящийся к сложению. Соответственно, аддитивная топливная коррекция (или иначе как долгосрочная) рассчитывается на основе показаний мультипликативной коррекции (краткосрочной).
Аддитивная составляющая работает только на холостом ходу и единицей ее измерения являются миллисекунды.
Функционально долговременная коррекция выполняет действия для получения сигнала от датчика кислорода.
В практике Кад принято обозначать в процентах. Пределы его изменения варьируются – от -10 до +10%. Предположим на примере, что двигатель прогрет и нагреватель кислородного датчика подготовил его к работе. Двигатель работает на холостом ходу, но отклика от кислородного датчика нет. Электронный блок начинает увеличивать время впрыска для обогащения смеси, т.е. долговременная коррекция увеличилась на 1%, но отклика от датчика кислорода также отсутствует. Блок управления продолжает удлинять время впрыска и до тех пор, пока не начнется отклик от кислородного датчика. Отклик от датчика в данном конкретном примере появился при Кад равным 4%. Это говорит о том, что при аддитивной коррекции равной 4% кислородный датчик перешел в активное состояние и мультипликативной коррекцией поддерживается смесь в оптимальном состоянии.
Мультипликативная коррекция
Кмульт – показатель безразмерный. Предел его изменений лежит в диапазоне от 0,75 до 1,25. Выход за границы предельных значений любого коэффициента самообучения свидетельствует о значительном отклонении состава смеси от стехиометрии.
Если Кмульт станет меньше 0,78 или больше 1,22, система встроенной в блок самодиагностики включит желтую предупреждающую контрольную лампу «проверь двигатель». Аналогично включится лампа, если долговременная коррекция превысит 9-ти процентную границу, т.е. достигла критического значения, при этом, как в положительную, так и отрицательную сторону. Проверкой сканером маски DTC выявляются коды неисправностей РО171 (смесь бедная) или РО172 – смесь богатая.
Краткосрочная коррекция (STFT) относится к немедленным изменениям подачи топлива, происходящим несколько раз в секунду.
При диагностике необходимо обратить внимание на строку параметров сканера «ДК1-Банк 1», где отслеживается работа кислородного датчика. Когда сигнал датчика уходит в плюс, блок управления мгновенно меняет значение кратковременной коррекции в сторону минуса, прикрывая распыл форсунки. Значение слова «Банк 1» встречается практически на всех мультимарочных сканерах и означает оно контроль топливной смеси в одном блоке цилиндров. На V-образных двигателях, например, работает также строка «ДК1-Банк 2».
Причина отклонения показаний кислородного датчика в сторону плюса может быть не герметичность форсунок, а в сторону минуса (сваливание сигнала в бедную смесь) – подсос воздуха во впускной коллектор.
Коэффициент коррекции времени впрыска и его составляющие
Текущий коэффициент коррекции Ктек реагирует на постоянно происходящие колебания состава смеси, но функция его на этом и заканчивается. В то время, когда выпускался инжекторный автомобиль ВАЗ-2114 с установленным блоком Январь-5.1 время впрыска корректировалось только на основании текущего коэффициента коррекции. Установленные блоки Январь-7.2 и Bocsh M7.9.7 на ВАЗ-2114 стали учитывать аддитивным и мультипликативным коэффициентами влияние долговременных, медленно меняющихся факторов, возникающих в процессе работы двигателя (снижение компрессии, давления топлива, производительности работы бензонасоса, увод параметров ДМРВ и т.д.).
Как влияют и приводят в соответствие текущий коэффициент коррекции Ктек его составляющие коэффициенты самообучения (кратковременная и долговременная) приведем на примере.
На автомобиле Лачетти двигатель холодный и отсутствует лямбда регулирование, т.е. режим адаптации топливной смеси не включился. При этом, текущий коэффициент коррекции Ктек = 1. Условия включения режима адаптации: двигатель должен прогреться до рабочей температуры, активизировались кислородные датчики. Если соблюдены условия и двигатель не имеет серьезных повреждений газораспределительного механизма и поршневой группы, а также исправен датчик абсолютного давления, то коэффициент Ктек будет принимать значения на холостом ходу в пределах 0,98–1,02.
Если двигатель перевести в режим частичной нагрузки, то влияние аддитивного коэффициента, работающего только на холостом ходу принимать в расчетах не имеет смысла. Функционировать начинает мультипликативный коэффициент.
Задача всех коэффициентов заключается в управлении временем впрыска форсунок. И основной тон в этом задает управляющий кислородный датчик.
Предположим, что кривая сигнала кислородного датчика увеличивается, сообщая блоку управления об уменьшении кислорода в смеси. Блок управления мгновенно реагирует на отсутствие кислорода и короткую коррекцию уменьшает, укорачивая тем самым время открытого состояния форсунок. Реакция кислородного датчика на уменьшение топливоподачи отражается падающей кривой в сторону бедной смеси. Блок управления получив сигнал от кислородного датчика тут же увеличивает короткую коррекцию и время впрыска соответственно растет.
Аддитивная составляющая коррекции самообучения Кад также контролирует изменения коэффициента Ктек, но только в режиме холостого хода. Размерность аддитивной коррекции – проценты или миллисекунды.
В упрощенном виде изменение состава смеси, определяемое коэффициентом Кад, рассчитывается по формуле: Кад*100/нагрузка. На исправном двигателе в режиме холостого хода нагрузка находится в пределах 18-20%. Предположим, что Кад принял значение, равное 3%. Просчитав по упрощенной формуле ориентировочный состав смеси, получаем 15-ти процентное обогащение. Аналогично и с минусовым значением адаптации. Если Кад=-3%, то получаем 15-ти процентное обеднение смеси.
Коэффициент коррекции co
На ранних версиях систем управления двигателем инжекторных автомобилей отсутствовали кислородные датчики и, соответственно, автоматическая поддержка топливной смеси не работала. Выравнивать смесь в нормальную возможно было только потенциометром СО, изменяя в сторону обогащения или обеднения.
Принцип регулирования смеси потенциометром основывался на показаниях газоанализатора, примерно так же, как и на карбюраторных двигателях. Установленные нормативы компонентов выброса в выхлопных газах приведены в инструкциях к газоанализатору. И если при регулировке показания СО на газоанализаторе установились на 0,8%, то это означает, что топливная смесь отрегулирована правильно и соответствует норме. С усовершенствованием аппаратной части блока управления, регулирование коэффициента коррекции со стало возможным непосредственно со сканера и потенциометр уже не устанавливался.
Коэффициент динамической коррекции УОЗ
Динамические характеристики автомобиля зависят не только от состояния топливной смеси, поступающей в цилиндры. В переходных режимах, например, от холостого хода к ускорению, большое значение имеет настройка коэффициента динамической коррекции угла опережения зажигания. При этом топливная смесь, подаваемая в цилиндры и динамическая коррекция УОЗ тесно связаны между собой.

По графику зависимости УОЗ от оборотов двигателя наблюдается отскок угла в данном программном обеспечении, которое достигает 10 градусов от оптимального УОЗ в некоторых режимных точках. Чем больше коррекция угла, тем сильнее проявляются запаздывания и провалы при ускорении. Незначительно изменив состав смеси в сторону обогащения и уменьшив коррекцию угла, можно существенно улучшить поведение автомобиля во всем диапазоне нагрузок.
diagnozbibike.ru
Цикл статей для настройщиков, запуск — Лада 2113, 1.6 л., 2007 года на DRIVE2
Всем привет!
У многих возникают трудности в запуске различных нестандартных конфигураций моторов. У меня тоже не всегда получается легко и непринуждённо запускать любой мотор в любую погоду, бывают капризные моторы. Тема статьи про запуск. Тема не такая интересная, скорее скучная, но написать надо. Наверно такой материал лучше снимать на видео и показывать различные запуски моторов, но лучше что-то, чем ничего. В этой статье я поделюсь с вами своим личным опытом по запуску моторов на холодную и горячую, небольшие хитрости которые я использую в реальной жизни при настройке моторов.

Калибровки режима запуска.
Для начала хочу отметить важные моменты, не касающиеся прошивки, от которых зависит запуск мотора. В запуске мотора, прежде всего нужны составляющие:
1) Уверенно и быстро крутить мотор стартером.
-Заряженный аккумулятор, затянутые клеммы, никакие плохие контакты на клеммах не допускаются.
-Провода плюса и массы должны быть без окислов.
-Исправный стартер, обычно на стартерах бывают также плохие контакты втягивающего реле, пятаки бывают подгоревшие. Нужно чтобы стартер был в идеале, тогда он при запуске будет крутится как бешеный и не будет сильно потреблять много тока.
2) Давление топлива в норме, чистые форсунки, фильтра грубой и тонкой очистки.
3) Зажигание, искра должна быть хорошей.
-Проводка на катушки зажигания без окислов, хорошие разъёмы и контакты.
-ВВ провода с плотными контактами.
-Чистые свечи с необходимым зазором для вашего мотора.
-Стандартные настройки УОЗ в режиме запуска.
-Хорошее масло.
А теперь что касается самой прошивки. В прошивке есть алгоритмы, которые позволяют запустить мотор. На самом деле, они достаточно простые. Включается зажигание, ЭБУ включает бензонасос, обычно 3 секунды он работает, тем самым создаёт давление в топливной системе, необходимое для работы системы впрыска. По температура охлаждающей жидкости ЭБУ выставляет коэффициент коррекции топлива в режиме пуска, ставит РХХ в нужное положение. Чем ниже температура, тем на большее количество шагов открывается РХХ и тем больше топлива будет подаваться. От бортового напряжения в системе ставится добавочное время впрыска с помощью калибровки "динамика форсунки". Программа находится в режиме запуска.

Полный размер
Положение РХХ на пуске, первая калибровка которую я смотрю когда запускаю мотор.

Полный размер
Коррекцию неплохо посмотреть, бывает в ней удобно корректировать пусковое топливо.

Полный размер
УОЗ на пуске, обычно его корректирую в пределах 1-3гр максимум.
Далее начинаем крутить стартер. ЭБУ начинает подавать топливо, открывая форсунки. Калибровки цикловых подач напрямую участвуют в подаче топлива.

Полный размер
Можно покрутить цикловые подачи, если требуется добавить либо убавить пусковое топливо.
Для тех, кто любит читать сразу интересное, рассмотрим реальную практику. Ключ на старт, зажигание, поехали… чих пых тыр пым пым… упсс. блин, это же была последняя попытка запустить мотор, сел акум, сегодня на трамвае едем на работу. Но до него же еще идти по холоду…
Первый запуск после сборки мотора. Мотор только собрали, всё навесное оборудование подцепили, крутим стартер, но увы мотор не запускается. Вроде всё сделано правильно. С чего начать?
1. Проверить проводку под капотом. Прежде всего в первую очередь посмотреть на ДПКВ, ДПДЗ, разъёмы форсунок, разъёмы на катушки. Бывает что перепутаны провода на ДПКВ или до него большое расстояние от шкифа, также бывают путают провода на катушки, форсунки. Однажды не мог запустить свою 2108, оказалось провода на ДПКВ нужно было поменять местами. Если при запуске в диагностике видно обороты мотора — ДПКВ рабочий. Перед запуском можно также и проверить работу ДПДЗ — выжать до упора педаль газа, в идеале должно быть 100% и отпустить, должно быть 0%. Посмотреть АЦП ДТОЖ, т.к по нему выставляются коррекции топлива и УОЗ.
2. Если вспышек вообще не наблюдается, вариантов много. Проверяем метки, если метки впорядке, проверяем наличие искры, далее проверяем работу форсунок (провода, разъёмы).
3. Если мотор схватывает, но не заводится, что мало вероятно, (т.к. если долго пытаться крутить по нескольку раз, то обычно это всегда приводит к запуску исправного мотора с нормальной компрессией). В этом случае нужно начинать крутить цикловые подачи, положение РХХ на пуске, приоткрывать дроссель.
Мотор не запускается на горячую, но на холодную всё хорошо и даже очень. Обычно в этом случае виновата смесь. В этом случае очень просто это определить, изменяя положение РХХ на пуске. Поставили на зажигание, в программе диагностики opendiag вывели текущее положение РХХ, оно например у нас выставлено в 50 шагов. Делаем ради эксперимента в 60 шагов, слышим как РХХ подвинулся, заводим. Сразу становится понятно, после первого и второго раза, в каком состоянии находится смесь на запуске, в бедной или богатой. Если увеличили положение РХХ и мотор стал запускаться легче, добавим еще чуть чуть воздуха, стало еще легче, значит смесь на 50 шагах была очень богатой. Если с 50 до 40 шагов убавили и стало лучше, значит смесь была бедная, возможно даже уже двигать не РХХ, а просто на 7-10% увеличить цикловую подачу топлива.
Мотор не запускается на холодную. Это пожалуй самое интересное для меня в настройке. Самое сложное для меня это запускать в -20гр и ниже 16кл мотор на валах и ресивере. Тут надо угадать эти самые цикловые подачи, УОЗ которые требуются для хорошей вспышки. Опять же на морозе 50% успеха отдаю подготовке железа к запуску, нежели прошивке. Обычно на стандартных цикловых подачах моторы схватывают на стандартных форсунках достаточно хорошо. Рассмотрю случай, когда у нас под капотом объёмный мотор на валах, ресивере, форсунки с производительностью больше 300сс, погода за бортом -15гр. Для запуска такого мотора придерживаюсь следующей тактики:
1) Не сильно увеличить подачу воздуха.
2) Увеличить подачу топлива, не жалеть его, т.к большой форсунке нужно больше времени для лучшего распыления. Также большой мотор требует больше топлива.
3) Фаза впрыска только на закрытый клапан, чтобы минимизировать заливку свечей.

Фаза на закрытый клапан 90гр. В таком раскладе всегда попадаем на закрытый клапан в любом типе впрыска.
4) Статика и динамика форсунок должна быть точная, динамика играет важную роль, т.к. на морозе при запуске хорошо проседает бортовое напряжение. Бывает проблема в калибровке "динамика форсунки".
Мотор начинает схватывать, заводится и глохнет. Это говорит о том, что цикловые подачи отработали чётко, мотор уже почти вышел на холостые, но ему что-то мешает. Чтобы мотор хорошо после пуска встал на холостые, требуется чтобы датчики расхода воздуха очень быстро и правильно подхватили мотор, чтобы РХХ ничего лишнего не добавил. Распространённая ситуация, когда РХХ после пуска сразу же начинает быстро ползти вверх, тем самым обедняя смесь, а в это время ДМРВ не успел среагировать, и привет дядя Вася. Обычно в таких случаях помогает кратковременное быстрое нажатие на педальку газа, но очень аккуратно, чтобы опять же не обеднить смесь. Задача разбудить подкапотного монстрика. После того, как он уже 2-3 сек начал работать, можно вздохнуть, если смесь откатана хорошо, скорее всего он уже выйдет на прогрев. В запуске важны два момента: вспышки, переход с пуска на ХХ. Когда не работает ДМРВ, то отлично видно, когда запускаешь мотор, он легко заводится, далее через 2-3 сек глохнет. Пусковое топливо догорает и мотор глохнет. Буквально 2 секунды мотор работает на пусковом топливе, далее уже должен наступать ХХ. В основном, на практике топлива зимой не хватает. Те, кто говорят что прошивка заливает свечи, что очень много бензина, в основном остаются неправы. На бедной смеси тоже заливаются свечи, т.к. топливо не воспламенилось. Ну и барщить тоже не надо, я обычно работаю с 5-10% коррекцией топлива. Зимний запуск интересен тем, что только 1 раз в день можно его проверить — утром перед поездкой на работу. Второй запуск уже не такой интересный, обычно мотор запускается. Также хочется сказать пару слов про режим ПУСК-Переход на ХХ. В этом режиме обычно настраивается добавочное топливо, время его действия. Последнее время его перестал трогать. Гораздо важнее отработать первую фазу, чтобы пусковое топливо дало хороший запас для дальнейшего перехода на ХХ.
Моя 2108 ездит на хрюнделях, работают они по двум датчикам — ДТВ и ДПДЗ, ДАД не использую. Мотор ездит на ПЦН 16x16 про м73 на прошивке j73sx. Запуск намного лучше чем было на знаменитом ресивере Брагин на ДАД+ДТВ. Плюс ДТВ+ДПДЗ в том, что топливо жёстко прописано в таблице. На результат влияет температура мотора и впускного воздуха. Остаётся правильно выставить коррекции и наслаждаться одинаковым запуском каждый день.
Чтобы обеспечить прогревочные обороты на дросселях без РХХ, нужно на прогретом моторе открыть дросселя и чтобы обороты стали 2
www.drive2.ru