Гибрид это что


Гибрид — Википедия

Гибри́д (от лат. hibrida, hybrida — помесь) — организм или клетка, полученные вследствие скрещивания генетически различающихся форм.

Понятие гибрид особенно распространено в ботанике, но применяется и в зоологии. Возможность искусственного получения гибридов впервые предположил немецкий учёный Р. Камерариус в 1694 году. Впервые искусственную гибридизацию осуществил английский садовод Томас Фэйрчайлд, скрестив в 1717 году разные виды гвоздик.

В XVIII веке гибриды в русском народном языке назывались «ублюдками». В 1800 году Смеловский Т. А. ввёл термин «помеси», который просуществовал весь XIX век, и только в 1896 году А. Н. Бекетов предложил термин «гибриды»[1].

Гибриды могут быть внутриродовыми (при скрещивании видов принадлежащих одному роду) или межродовыми (при скрещивании видов, относящихся к разным родам).

В промышленном и любительском цветоводстве также используется термин грекс (англ. grex), который был введён Карлом Линнеем для использования биноминальной номенклатуры в классификации искусственных гибридов.

В цветоводстве гибриды первого поколения называются первичными гибридами.

Реципрокные гибриды появляются в результате реципрокных скрещиваний — гибридизация, включающая перемену пола родителей, связанных с каждым генотипом.

Реципрокные эффекты[править | править код]

Различия между реципрокными гибридами — реципрокные эффекты — свидетельствуют о неодинаковом вкладе мужского и женского пола в генотип потомства. Если бы потомки от отца и матери получали одинаковую генетическую информацию, то не должно было быть никаких реципрокных эффектов.

Измерение реципрокных эффектов

Для измерения реципрокных эффектов (r) можно использовать выражение:

r=b−aB−A{\displaystyle r={\frac {b-a}{B-A}}}

где A и B — значения признака для исходных скрещиваемых форм; a — то же самое для гибрида ♂A x ♀B; b — для реципрокного гибрида ♂B x ♀A. Положительное значение r (r > 0) будет означать «отцовский» эффект, отрицательное (r < 0) — «материнский», а абсолютная величина r (│r│) даст относительную оценку этих эффектов в единицах, равных разности значения признака для исходных форм (B — A).

Реципрокные эффекты у птиц

У кур «отцовский» эффект наблюдался по наследованию инстинкта насиживания (r = 0.45[2], 0.38[3] и 0.50[4]), половой скороспелости (r = 0.59[5]), яйценоскости (r = 0.32, −2.8, 1.07, 0.11, 0.46[5], 1.14[6] и 2.71[7]), и живому весу (r = 0.30)[7].

По весу яиц наблюдался «материнский эффект» (r = −1.0)[7].

Реципрокные эффекты у млекопитающих

У свиней «отцовский» эффект наблюдается по числу позвонков (отбор на длинное туловище) (r = 0.72[8] и 0.74[9]), длине тонкого кишечника (отбор на лучшую оплату корма), и динамике роста (отбор на скороспелость) (r = 1.8).

«Материнский эффект» наблюдался по среднему весу эмбрионов, пищеварительной системы и её частей, длине толстого кишечника и весу новорожденных поросят[9].

У крупного рогатого скота «отцовский» эффект наблюдался по удою молока (r = 0.07, 0.39, 0.23) и продукции молочного жира (количество жира) (r = 1.08, 1.79, 0.34).

«Материнский эффект» наблюдался по проценту жира в молоке у коров (r = −0.13, −0.19, −0.05)[6].

Теории реципрокных эффектов[править | править код]

«Материнский эффект»

Материнский эффект может быть обусловлен цитоплазматической наследственностью, гомогаметной конституцией и утробным развитием у млекопитающих. Различают собственно материнский эффект, когда генотип матери проявляется в фенотипе потомства. Молекулы в яйцеклетке, такие как мРНК, могут влиять на ранние стадии процесса развития. Различают также материнское наследование, при котором часть генотипа потомство получает исключительно от матери, например митохондрии и пластиды, содержащие свой собственный геном. При материнском наследовании фенотип потомства отражает его собственный генотип.

«Отцовский эффект»

Большее влияние отца на яйценоскость дочерей у кур объясняли тем, что у птиц гетерогаметным полом является самка, а гомогаметным — самец. Поэтому свою единственную X-хромосому курица получает от отца, и если яйценоскость определяется ею, то тогда все понятно[3]. Эта трактовка может объяснить хромосомный механизм явления у птиц, но для млекопитающих уже неприменима. Удивительно также то, что признаки, проявляющиеся только у женского пола (инстинкт насиживания, скороспелость и яйценоскость у курицы или удой молока и количество молочного жира у коровы), которые, казалось бы, должны передаваться матерью, тем не менее передаются больше отцом.

Межвидовая и межродовая гибридизация[править | править код]

Межвидовая гибридизация часто наблюдается как в природе, так и при культивировании человеком (содержании в неволе) у множества видов растений и животных. В природе в районах соприкосновения близких видов могут формироваться так называемые «гибридные зоны», где гибриды численно преобладают над родительскими формами.

Межвидовая интрогрессивная гибридизация широко распространена у дафний. В некоторых летних популяциях дафний гибриды преобладают, что затрудняет определение границ видов[10].

Хонорик — выведенный путём селекции гибрид между тремя родительскими видами рода Mustela. Самцы хонориков стерильны, а самки фертильны.

Известный экспериментальный гибрид Рафанобрассика (Raphano-brassica) был получен Г. Д. Карпеченко при скрещивании редьки с капустой. Оба вида принадлежат к разным родам и имеют по 18 хромосом. Гибрид, полученный в результате удвоения числа хромосом (36), был способен к размножению, так как в процессе мейоза хромосомы редьки и капусты конъюгировали с себе подобными. Он обладал некоторыми признаками каждого из родителей и сохранял их в чистоте при размножении[11].

Межродовые гибриды (как естественные, так и полученные селекционерами) известны также в семействах злаков, розовых, цитрусовых[12], орхидных и др. Так, гексаплоидный геном мягких пшениц образовался путём объединения диплоидных геномов двух предковых видов пшениц и одного вида близкого рода Эгилопс (Aegilops).

Гибриды в ботанической номенклатуре[править | править код]

Гибридные таксоны растений называются нототаксонами.

По данным AOS начиная с января-марта 2008 года между знаком × и названием гибридного рода должен быть пробел[14].
Пример: × Rhynchosophrocattleya.

При создании новых сортов культурных растений получение гибридов осуществляется ручным путём (ручное опыление, удаление метёлок), химическими (гаметоцид) или генетическими (самонесовместимость, мужская стерильность) средствами. Полученные компоненты можно использовать в различных системах контролируемого скрещивания. Цель селекционера заключается в использовании гетерозиса, или жизненной силы гибрида, которая проявляется с наибольшим эффектом в поколении F1, — чтобы получить желаемое преимущество в урожайности или по некоторой другой характеристике в результирующем поколении, или гибриде. Этот гетерозис особенно хорошо выражен в случае скрещиваний между инбредными линиями, но может также показать преимущество в рамках других систем.

Гибрид, полученный путём однократного скрещивания между двумя инбредными линиями, обычно оказывается высоко однородным. Факт наличия гетерозиготности не имеет последствий, так как обычно дальнейшего размножения сверх поколения F1 не проводится, и сорт поддерживается многократным возвратом к контролируемому скрещиванию родительских линий[15].

Явления стерильности гибридов неоднородны. Наблюдается изменчивость в отношении того, на какой именно стадии проявляется стерильность и каковы её генетические причины.

Нарушение сперматогенеза на стадиях, предшествующих мейозу, — непосредственная причина стерильности у самцов мула; нарушения мейоза — причина стерильности у гибридных самцов при некоторых скрещиваниях между разными видами Drosophila (например, D. pseudoobscura × D. persimilis).

К ограниченной полом стерильности и нежизнеспособности гибридов у раздельнополых животных приложимо обобщение, известное под названием «правило Холдейна»[en][16]. Гибриды от межвидовых скрещиваний у раздельнополых животных должны состоять, во всяком случае потенциально, из гетерогаметного пола (несущего хромосомы XY) и гомогаметного (XX) пола. Правило Холдейна гласит, что в тех случаях, когда в проявлении стерильности или нежизнеспособности гибридов существуют половые различия, они наблюдаются чаще у гетерогаметного, чем у гомогаметного пола. У большинства животных, в том числе у млекопитающих и у двукрылых, гетерогаметны самцы. Из правила Холдейна имеются, однако, многочисленные исключения.

Третья стадия развития, на которой может проявляться гибридная стерильность, — это гаметофитное поколение у растений. У цветковых растений из продуктов мейоза непосредственно развиваются гаметофиты — пыльцевые зерна и зародышевые мешки, — которые содержат от двух до нескольких ядер и в которых формируются гаметы. Нежизнеспособность гаметофитов — обычная причина стерильности гибридов у цветковых растений. Мейоз завершается, но нормального развития пыльцы и зародышевых мешков не происходит.

Гибридная стерильность на генетическом уровне может быть обусловлена генными, хромосомными и цитоплазматическими причинами[17]. Наиболее широко распространена и обычна генная стерильность. Неблагоприятные сочетания генов родительских типов, принадлежащих к разным видам, могут приводить и действительно приводят к цитологическим отклонениям и нарушениям развития у гибридов, что препятствует образованию гамет. Генетический анализ генной стерильности у гибридов Drosophila (D. pseudoobscura × D. persimilis, D. melanogaster × D. simulans и т. п.) показывает, что гены, обусловливающие стерильность, локализованы во всех или почти во всех хромосомах родительского вида[18][19].

Неблагоприятные взаимодействия между цитоплазматическими и ядерными генами также ведут к стерильности межвидовых гибридов в разных группах растений и животных[20].

Виды растений и животных часто различаются по транслокациям, инверсиям и другим перестройкам, которые в гетерозиготном состоянии вызывают полустерильность или стерильность. Степень стерильности пропорциональна числу независимых перестроек: так гетерозиготность по одной транслокации даёт 50%-ную стерильность, по двум независимым транслокациям — 75%-ную стерильность и т. д. Стерильность растений определяется гаметофитом. У гетерозигот по хромосомным перестройкам в результате мейоза образуются дочерние ядра, несущие нехватки и дупликации по определённым участкам; из таких ядер не получается функциональных пыльцевых зёрен и семязачатков. Хромосомная стерильность подобного типа очень часто встречается у межвидовых гибридов цветковых растений.

Течение мейоза у гибрида может быть нарушено либо генными факторами, либо различиями в строении хромосом. Как генная, так и хромосомная стерильность может выражаться в аберрантном течении мейоза. Но типы мейотических аберраций различны. Генная стерильность обычна у гибридов животных, а хромосомная стерильность — у гибридов растений. Генетический анализ некоторых межвидовых гибридов растений показывает, что нередко у одного гибрида наблюдается одновременно и хромосомная, и генная стерильность[17].

В случаях, когда некий межвидовой гибрид достаточно жизнеспособен и способен к размножению, поколения его потомков будут содержать значительную долю нежизнеспособных, субвитальных, стерильных и полустерильных особей. Эти типы представляют собой неудачные продукты рекомбинации, возникшие при межвидовой гибридизации. Такое подавление мощности и плодовитости в гибридном потомстве называют разрушением гибридов (англ. hybrid breakdown). Разрушение гибридов — последнее звено в последовательности преград, препятствующих межвидовому обмену генами.

Разрушение гибридов неизменно обнаруживается в потомстве межвидовых гибридов у растений, где его легче наблюдать, чем при большинстве скрещиваний у животных[17].

Гибриды, имеющие собственные названия[править | править код]

Многие виды одного рода и даже представители различных родов легко скрещиваются между собой, образуя многочисленные гибриды, способные к дальнейшему размножению. Большинство гибридов, появившихся за последние 100 лет, создано искусственно с помощью целенаправленной селекционной работы[23].

Селекция фаленопсисов и других красивоцветущих орхидей развивается в двух направлениях: для срезки и для горшечной культуры.

Некоторые искусственные роды орхидей:

  1. Щербакова А. А. История ботаники в России до 60-х годов XIX века (додарвиновский период). — Новосибирск: "Наука", 1979. — 368 с.
  2. ↑ Roberts E., Card L. (1933). V World Poultry Congr., 2, 353.
  3. 1 2 Morley F., Smith J. (1954). «Agric. Gaz. N. S. Wales» 65, N. 1, 17.
  4. ↑ Saeki J., Kondo K., et al. (1956). «Jpn. J. Breed.» 6, N. 1, 65.
  5. 1 2 Warren D. (1934). «Genetics» 19 600.
  6. 1 2 Дубинин Н. П., Глембоцкий Я. Л. (1967) Генетика популяций и селекция. — М.: Наука с. 487, 496.
  7. 1 2 3 Добрынина А. Я. (1958) Реципрокные скрещивания московских кур и леггорнов. Тр. Ин-та генетики АН СССР, М, № 24, с. 307.
  8. ↑ Асланян М. М. (1962) Особенности наследования и эмбрионального развития поросят при скрещивании свиней крупной белой породы и шведский ландрас. Научн. докл. высш. школы, № 4, с. 179.
  9. 1 2 Александров Б. В. (1966) Рентгенографическое исследование варьирования и характера наследования числа позвонков при скрещивании свиней крупной белой породы и ландрас. Генетика. 2 № 7, с. 52.
  10. ↑ Spatial and temporal patterns of sexual reproduction in a hybrid Daphnia species complex (недоступная ссылка)
  11. ↑ К. Вилли (1964) Биология. — М., Мир., 678 с.
  12. ↑ http://www.floraname.ru/nazvaniya-gibridy/mezhrodovye-gibridy (недоступная ссылка)
  13. ↑ Венский международный кодекс ботанической номенклатуры (2006)
  14. ↑ Dateline London, England — May 20, 2008. RHS Advisory Panel on Orchid Hybrid Registration (APOHR) Meeting. Архивировано 24 декабря 2010 года.
  15. ↑ Руководство для новых типов и видов. Международный союз по охране новых сортов растений (UPOV). 2002 г.
  16. Фельдман Г. Э. Джон Бэрдон Сандерсон Холдейн 1892—1964. Глава II. Изд. «Наука», Москва, 1976 г.
  17. 1 2 3 Грант В. Эволюция организмов. М.: Мир, 1980. 480 с
  18. ↑ Dobzhansky Th. 1951. Genetics and the Origin of Species, 1st, 2d, and 3d eds. Columbia University Press, New York
  19. ↑ Dobzhansky Th. 1970. Genetics of the Evolutionary Process. Columbia University Press, New York
  20. ↑ Grun P. 1976. Cytoplasmic Genetics and Evolution. Columbia University Press, New York
  21. Бабаев А. А., Винберг Г. Г., Заварзин Г. А. и др. Биологический энциклопедический словарь / Гиляров М. С.. — М.: Сов. Энциклопедия, 1986.
  22. ↑ Медведи гризли заселяют Манитобу — Наука и техника — Биология — Компьюлента (неопр.) (недоступная ссылка). Дата обращения 11 сентября 2011. Архивировано 18 апреля 2010 года.
  23. ↑ Ежек Зденек, Орхидеи. Иллюстрированная энциклопедия. Издательство: Лабиринт, 2005 г

ru.wikipedia.org

Гибрид - это... Что такое Гибрид?

Гибри́д (от лат. hibrida, hybrida — помесь) — организм (клетка), полученный вследствие скрещивания генетически различающихся форм. Понятие гибрид особенно распространено в ботанике, но применяется и в зоологии.

В промышленном и любительском цветоводстве также используется термин грекс (англ. grex). Введен Карлом Линнеем для использования биноминальной номенклатуры в классификации искусственных гибридов.

Гибриды могут быть внутривидовыми (при скрещивании различных сортов, форм, разновидностей), внутриродовыми (при скрещивании видов принадлежащих одному роду) или межродовыми (при скрещивании видов относящихся к разным родам).

В цветоводстве, гибриды первого поколения называются первичными гибридами.

Возможность искусственного получения гибридов впервые предположил немецкий учёный Р. Камерариус в 1694 году, впервые искусственную гибридизацию осуществил английский садовод Т. Фэрчайлд, скрестив в 1717 году разные виды гвоздик.

В XVIII в. гибриды в русском народном языке назывались «ублюдками». В 1800 году Смеловский Т. А. ввёл термин «помеси», который просуществовал весь XIX век, и только в 1896 году Бекетов А. Н. предложил термин «гибриды»[1].

Реципрокные гибриды

Реципрокные гибриды появляются в результате реципрокных скрещиваний — гибридизация, включающая перемену пола родителей, связанных с каждым генотипом.

Реципрокные эффекты

Различия между реципрокными гибридами — реципрокные эффекты — свидетельствуют о неодинаковом вкладе мужского и женского пола в генотип потомства. Если бы потомки от отца и матери получали одинаковую генетическую информацию, то не должно было быть никаких реципрокных эффектов.

Измерение реципрокных эффектов

Для измерения реципрокных эффектов (r) можно использовать выражение:

где A и B — значения признака для исходных скрещиваемых форм; a — то же самое для гибрида ♂A x ♀B; b — для реципрокного гибрида ♂B x ♀A. Положительное значение r (r > 0) будет означать «отцовский» эффект, отрицательное (r < 0) — «материнский», а абсолютная величина r (│r│) даст относительную оценку этих эффектов в единицах, равных разности значения признака для исходных форм (B — A).

Реципрокные эффекты у птиц

У кур «отцовский» эффект наблюдался по наследованию инстинкта насиживания (r = 0.45[2], 0.38[3] и 0.50[4]), половой скороспелости (r = 0.59[5]), яйценоскости (r = 0.32, −2.8, 1.07, 0.11, 0.46[5], 1.14[6] и 2.71[7]), и живому весу (r = 0.30)[7].

По весу яиц наблюдался «материнский эффект» (r = −1.0)[7].

Реципрокные эффекты у млекопитающих

У свиней «отцовский» эффект наблюдается по числу позвонков (отбор на длинное туловище) (r = 0.72[8] и 0.74[9]), длине тонкого кишечника (отбор на лучшую оплату корма), и динамике роста (отбор на скороспелость) (r = 1.8).

«Материнский эффект» наблюдался по среднему весу эмбрионов, пищеварительной системы и её частей, длине толстого кишечника и весу новорожденных поросят[9].

У крупного рогатого скота «отцовский» эффект наблюдался по удою молока (r = 0.07, 0.39, 0.23) и продукции молочного жира (количество жира) (r = 1.08, 1.79, 0.34).

«Материнский эффект» наблюдался по проценту жира в молоке у коров (r = −0.13, −0.19, −0.05)[6].

Теории реципрокных эффектов

«Материнский эффект»

Материнский эффект может быть обусловлен цитоплазматической наследственностью, гомогаметной конституцией и утробным развитием у млекопитающих. Различают собственно материнский эффект, когда генотип матери проявляется в фенотипе потомства. Молекулы в яйцеклетке, такие как мРНК, могут влиять на ранние стадии процесса развития. Различают также материнское наследование, при котором часть генотипа потомство получает исключительно от матери, например митохондрии и пластиды, содержащие свой собственный геном. При материнском наследовании фенотип потомства отражает его собственный генотип.

«Отцовский эффект»

Большее влияние отца на яйценоскость дочерей у кур объясняли тем, что у птиц гетерогаметным полом является самка, а гомогаметным — самец. Поэтому свою единственную X-хромосому курица получает от отца, и если яйценоскость определяется ею, то тогда все понятно[3]. Эта трактовка может объяснить хромосомный механизм явления у птиц, но для млекопитающих уже неприменима. Удивительно также то, что признаки, проявляющиеся только у женского пола (инстинкт насиживания, скороспелость и яйценоскость у курицы или удой молока и количество молочного жира у коровы), которые, казалось бы, должны передаваться матерью, тем не менее передаются больше отцом.

Межвидовая и межродовая гибридизация

Межвидовая гибридизация часто наблюдается как в природе, так и при культивировании человеком (содержании в неволе) у множества видов растений и животных. В природе в районах соприкосновения близких видов могут формироваться так называемые «гибридные зоны», где гибриды численно преобладают над родительскими формами.

Межвидовая интрогрессивная гибридизация широко распространена у дафний. В некоторых летних популяциях дафний гибриды преобладают, что затрудняет определение границ видов [1]/

Хонорик — выведенный путем селекции гибрид между тремя родительскими видами рода Mustela. Самцы хонориков стерильны, а самки фертильны.

Известный экспериментальный гибрид рафанобрассика (лат. Raphano-brassica) был получен Г. Д. Карпеченко при скрещивании редьки с капустой. Оба вида принадлежат к разным родам и имеют по 18 хромосом. Гибрид, полученный в результате удвоения числа хромосом (36), был способен к размножению, так как в процессе мейоза хромосомы редьки и капусты коньюгировали с себе подобными. Он обладал некоторыми признаками каждого из родителей и сохранял их в чистоте при размножении[10].

Межродовые гибриды (как естественные, так и полученные селекционерами) известны также в семействах злаков, розоцветных, цитрусовых [2], орхидных и др. Так, гексаплоидный геном мягких пшениц образовался путем объединения диплоидных геномов двух предковых видов пшениц и одного вида близкого рода Aegilops.

В ботанике

Гибридные таксоны растений называются нототаксонами.

По данным AOS начиная с января-марта 2008 года между знаком × и названием гибридного рода должен быть пробел[12].
Пример: × Rhynchosophrocattleya.

В растениеводстве

При создании новых сортов культурных растений получение гибридов осуществляется ручным путём (ручное опыление, удаление метёлок), химическими (гаметоцид) или генетическими (самонесовместимость, мужская стерильность) средствами. Полученные компоненты можно использовать в различных системах контролируемого скрещивания. Цель селекционера заключается в использовании гетерозиса, или жизненной силы гибрида, которая проявляется с наибольшим эффектом в поколении F1, — чтобы получить желаемое преимущество в урожайности или по некоторой другой характеристике в результирующем поколении, или гибриде. Этот гетерозис особенно хорошо выражен в случае скрещиваний между инбредными линиями, но может также показать преимущество в рамках других систем.

Гибрид, полученный путём однократного скрещивания между двумя инбредными линиями, обычно оказывается высоко однородным. Факт наличия гетерозиготности не имеет последствий, так как обычно дальнейшего размножения сверх поколения F1 не проводится, и сорт поддерживается многократным возвратом к контролируемому скрещиванию родительских линий[13].

В зоологии

Стерильность гибридов

Явления стерильности гибридов неоднородны. Наблюдается изменчивость в отношении того, на какой именно стадии проявляется стерильность и каковы её генетические причины.

Нарушение сперматогенеза на стадиях, предшествующих мейозу, — непосредственная причина стерильности у самцов мула; нарушения мейоза — причина стерильности у гибридных самцов при некоторых скрещиваниях между разными видами Drosophila (например, D. pseudoobscura × D. persimilis).

К ограниченной полом стерильности и нежизнеспособности гибридов у раздельнополых животных приложимо обобщение, известное под названием правила Холдейна. Гибриды от межвидовых скрещиваний у раздельнополых животных должны состоять, во всяком случае потенциально, из гетерогаметного пола (несущего хромосомы XY) и гомогаметного (XX) пола. Правило Холдейна гласит, что в тех случаях, когда в проявлении стерильности или нежизнеспособности гибридов существуют половые различия, они наблюдаются чаще у гетерогаметного, чем у гомогаметного пола. У большинства животных, в том числе у млекопитающих и у двукрылых, гетерогаметны самцы. Из правила Холдейна имеются, однако, многочисленные исключения.

Третья стадия развития, на которой может проявляться гибридная стерильность, — это гаметофитное поколение у растений. У цветковых растений из продуктов мейоза непосредственно развиваются гаметофиты — пыльцевые зерна и зародышевые мешки, — которые содержат от двух до нескольких ядер и в которых формируются гаметы. Нежизнеспособность гаметофитов — обычная причина стерильности гибридов у цветковых растений. Мейоз завершается, но нормального развития пыльцы и зародышевых мешков не происходит.

Гибридная стерильность на генетическом уровне может быть обусловлена генными, хромосомными и цитоплазматическими причинами[14].Наиболее широко распространена и обычна генная стерильность. Неблагоприятные сочетания генов родительских типов, принадлежащих к разным видам, могут приводить и действительно приводят к цитологическим отклонениям и нарушениям развития у гибридов, что препятствует образованию гамет. Генетический анализ генной стерильности у гибридов Drosophila (D. pseudoobscura × D. persimilis, D. tnelanogaster × D. simulans и т. п.) показывает, что гены, обусловливающие стерильность, локализованы во всех или почти во всех хромосомах родительского вида[15][16].

Неблагоприятные взаимодействия между цитоплазматическими и ядерными генами также ведут к стерильности межвидовых гибридов в разных группах растений и животных[17].

Виды растений и животных часто различаются по транслокациям, инверсиям и другим перестройкам, которые в гетерозиготном состоянии вызывают полустерильность или стерильность. Степень стерильности пропорциональна числу независимых перестроек: так гетерозиготность по одной транслокации даёт 50%-ную стерильность, по двум независимым транслокациям — 75%-ную стерильность и т. д. Стерильность растений определяется гаметофитом. У гетерозигот по хромосомным перестройкам в результате мейоза образуются дочерние ядра, несущие нехватки и дупликации по определённым участкам; из таких ядер не получается функциональных пыльцевых зёрен и семязачатков. Хромосомная стерильность подобного типа очень часто встречается у межвидовых гибридов цветковых растений.

Течение мейоза у гибрида может быть нарушено либо генными факторами, либо различиями в строении хромосом. Как генная, так и хромосомная стерильность может выражаться в аберрантном течении мейоза. Но типы мейотических аберраций различны. Генная стерильность обычна у гибридов животных, а хромосомная стерильность — у гибридов растений. Генетический анализ некоторых межвидовых гибридов растений показывает, что нередко у одного гибрида наблюдается одновременно и хромосомная, и генная стерильность[14].

Разрушение гибридов

В случаях, когда некий межвидовой гибрид достаточно жизнеспособен и способен к размножению, поколения его потомков будут содержать значительную долю нежизнеспособных, субвитальных, стерильных и полустерильных особей. Эти типы представляют собой неудачные продукты рекомбинации, возникшие при межвидовой гибридизации. Такое подавление мощности и плодовитости в гибридном потомстве называют разрушением гибридов (hybrid breakdown). Разрушение гибридов — последнее звено в последовательности преград, препятствующих межвидовому обмену генами.

Разрушение гибридов неизменно обнаруживается в потомстве межвидовых гибридов у растений, где его легче наблюдать, чем при большинстве скрещиваний у животных[14].

Гибриды, имеющие собственные названия

Гибриды в семействе Орхидные

Многие виды одного рода и даже представители различных родов легко скрещиваются между собой, образуя многочисленные гибриды, способные к дальнейшему размножению. Большинство гибридов, появившихся за последние 100 лет, создано искусственно с помощью целенаправленной селекционной работы[20].

Селекция фаленопсисов и других красивоцветущих орхидей развивается в двух направлениях: для срезки и для горшечной культуры.

Некоторые искусственные роды орхидей:

См. также

Примечания

  1. Щербакова А.А. История ботаники в России до 60-х годов XIX века (додравиновский период). — Новосибирск: "Наука", 1979. — 368 с.
  2. Roberts E., Card L. (1933). V World Poultry Congr., 2, 353.
  3. 1 2 Morley F., Smith J. (1954). «Agric. Gaz. N. S. Wales» 65, N. 1, 17.
  4. Saeki J., Kondo K., et al. (1956). «Jpn. J. Breed.» 6, N. 1, 65.
  5. 1 2 Warren D. (1934). «Genetics» 19 600.
  6. 1 2 Дубинин Н. П., Глембоцкий Я. Л. (1967) Генетика популяций и селекция. — М.: Наука с. 487, 496.
  7. 1 2 3 Добрынина А. Я. (1958) Реципрокные скрещивания московских кур и леггорнов. Тр. Ин-та генетики АН СССР, М, № 24, с. 307.
  8. Асланян М. М. (1962) Особенности наследования и эмбрионального развития поросят при скрещивании свиней крупной белой породы и шведский ландрас. Научн. докл. высш. школы, № 4, с. 179.
  9. 1 2 Александров Б. В. (1966) Рентгенографическое исследование варьирования и характера наследования числа позвонков при скрещивании свиней крупной белой породы и ландрас. Генетика. 2 № 7, с. 52.
  10. К. Вилли (1964) Биология. — М., Мир., 678 с.
  11. Венский международный кодекс ботанической номенклатуры (2006)
  12. Dateline London, England — May 20, 2008. RHS Advisory Panel on Orchid Hybrid Registration (APOHR) Meeting.
  13. Руководство для новых типов и видов. Международный союз по охране новых сортов растений (UPOV). 2002 г.
  14. 1 2 3 Грант В. Эволюция организмов. М.: Мир, 1980. 480 с
  15. Dobzhansky Th. 1951. Genetics and the Origin of Species, 1st, 2d, and 3d eds. Columbia University Press, New York
  16. Dobzhansky Th. 1970. Genetics of the Evolutionary Process. Columbia University Press, New York
  17. Grun P. 1976. Cytoplasmic Genetics and Evolution. Columbia University Press, New York
  18. Бабаев А. А., Винберг Г. Г., Заварзин Г. А. и др. Биологический энциклопедический словарь / Гиляров М. С.. — М.: Сов. Энциклопедия, 1986.
  19. Медведи гризли заселяют Манитобу — Наука и техника — Биология — Компьюлента
  20. Ежек Зденек, Орхидеи. Иллюстрированная энциклопедия. Издательство: Лабиринт, 2005 г

dic.academic.ru

Что такое Гибрид?! — DRIVE2

— Совершенствование двигателей внутреннего сгорания (ДВС) едва-едва поспевает за предъявляемыми к ним требованиями. С одной стороны, потребители с мечтами об одновременно мощном и экономичном моторе, с другой — экологи, ужесточающие нормы токсичности. А в завершение — геологи, все настойчивее напоминающие об истощении запасов «черного золота». Одним из вариантов решения этой проблемы являются гибридные силовые установки, состоящие из обычного ДВС и электродвигателя. В отличие от электромобилей и автомобилей на топливных элементах, которые все еще остаются "автомобилями будущего", гибриды уже с 1997 года выпускаются серийно.

— Давайте сравним автомобиль с обычным ДВС и электромобиль. Обыкновенный автомобиль способен проехать без дозаправки четыре-пять сотен километров и при этом отравить атмосферу некоторым объёмом вредных веществ. Заправочных станций предостаточно в любом регионе, и пополнить запасы топлива можно за считанные минуты. Электромобиль может проехать на одном заряде батарей порядка 80-160 км. Он экологически чист, бесшумен и практически безупречен до того момента, пока не наступает очередь подзарядки аккумуляторов. У существующих в наше время «электрических» машин этот процесс длится несколько часов.
Гибридные автомобили берут все лучшее от обоих моторов: ДВС и электрического. Достоинство первого – в удобном энергоносителе, жидком топливе, а второго – в выдающихся моментных характеристиках. В отличие от ДВС, электромотор не нужно заводить и «раскручивать». Он может «стоять и ждать» не потребляя энергии. Но как только дали ток – сразу получили максимальную тягу на колесах. Электродвигатель эффективнее двигателя внутреннего сгорания в режиме частых стартов и стопов (т.е., при езде в городском цикле). Двигатель внутреннего сгорания, наоборот, более эффективен на постоянных, оптимальных для данного двигателя оборотах.
В гибриде оба двигателя работают друг на друга. ДВС крутит генератор и питает энергией электромотор. Тот, в свою очередь, позволяет ДВС работать без резких разгонных нагрузок, в наиболее благоприятных режимах. Практически все современные гибриды имеют систему рекуперации или, по-русски, «возврата энергии». Суть ее в том, что при торможении или при движении машины накатом, электродвигатели начинают крутиться от колес и работать как генераторы, заряжая батарею. Отсюда – меньший износ, экологичность и экономичность (особенно в городском цикле.)
Итак, перед нами технологичный прогрессивный автомобиль, в котором нивелируются недостатки и объединяются достоинства двух моторов. Но., рано хлопать в ладоши, и послушаем, что говорят скептики.

— Гибридные автомобили сложнее и дороже традиционных автомобилей с двигателями внутреннего сгорания. Аккумуляторные батареи имеют небольшой диапазон рабочих температур, не любят морозов, подвержены саморазряду, срок службы их ограничен несколькими годами. А «экономность» гибрида прямо связана с состоянием АКБ. Кроме того, существует проблема утилизации отработанных батарей. Гибриды дороже в ремонте, да и за сам ремонт возьмется далеко не каждый. Кроме того, высокую экологичность и экономичность гибридов многие тоже ставят под сомнение. Так, ряд тестов, проведенных авторитетными автомобильными изданиями, показал, что гибриды дают заметную экономию топлива только в городе, при движении же в смешанном цикле незначительно, а за городом существенно проигрывают современным дизелям. Почетное звание «Самый экологичный автомобиль года» в 2007 и 2008 годах присуждалось также автомобилям с дизельными моторами.
Рассмотрим подробнее, какими бывают и как устроены гибриды.
По степени гибридизации их делят на «умеренные», «полные» и plug-in. «Полный» в состоянии двигаться лишь на электричестве, не потребляя топлива. «Умеренный» всегда задействует ДВС, а электромотор подключается, если требуется дополнительная мощность. Гибрид с подзарядкой (plug-in hybrid) — такой гибрид можно включать в розетку для подзарядки. В результате обладатель подобного гибрида получает все преимущества электрического автомобиля, без самого большого недостатка: ограниченного пробега на одном заряде. Когда электрический заряд заканчивается, подключается ДВС и автомобиль превращается в обычный гибрид.
По принципу взаимодействия электрической и топливной составляющих авто, гибридные приводы принято разделять на три вида: последовательный, параллельный и последовательно-параллельный.

• ПОСЛЕДОВАТЕЛЬНАЯ СХЕМА:

— Это — самая простая гибридная конфигурация. ДВС используется только для привода генератора, а вырабатываемая последним электроэнергия заряжает аккумуляторную батарею и питает электродвигатель, который и вращает ведущие колеса. Это избавляет от необходимости в коробке передач и сцеплении. Для подзарядки аккумулятора также используется рекуперативное торможение. Свое название схема получила потому, что поток мощности поступает на ведущие колеса, проходя ряд последовательных преобразований. От механической энергии, вырабатываемой ДВС в электрическую, вырабатываемую генератором, и опять в механическую. При этом часть энергии неизбежно теряется. Последовательный гибрид позволяет использовать ДВС малой мощности, причем он постоянно работает в диапазоне максимального КПД, или же его можно совсем отключить. При отключении ДВС электродвигатель и батарея в состоянии обеспечить необходимую мощность для движения. Поэтому они, в отличие от ДВС, должны быть более мощными, а, значит, они имеют и большую стоимость. Наиболее эффективна последовательная схема при движении в режиме частых остановок, торможений и ускорений, движении на низкой скорости, т.е. в городе. Поэтому используют ее в городских автобусах и других видах городского транспорта. По такому принципу работают также большие карьерные самосвалы, где необходимо передать большой крутящий момент на колеса, и не требуются высокие скорости движения.

• ПАРАЛЛЕЛЬНАЯ СХЕМА:

— Здесь ведущие колеса приводятся в движение и ДВС, и электродвигателем (который должен быть обратимым, т.е. может работать в качестве генератора). Для их согласованной параллельной работы используется компьютерное управление. При этом сохраняется необходимость в обычной трансмиссии, и двигателю приходится работать в неэффективных переходных режимах. Момент, поступающий от двух источников, распределяется в зависимости от условий движения: в переходных режимах (старт, ускорение) в помощь ДВС подключается электродвигатель, а в устоявшихся режимах и при торможении он работает как генератор, заряжая аккумулятор. Таким образом, в параллельных гибридах большую часть времени работает ДВС, а электродвигатель используется для помощи ему. Поэтому параллельные гибриды могут использовать меньшую аккумуляторную батарею, по сравнению с последовательными. Так как ДВС непосредственно связан с колесами, то и потери мощности значительно меньше, чем в последовательном гибриде. Подобная конструкция достаточно проста, но ее недостатком является то, что обратимая машина параллельного гибрида не может одновременно приводить в движение колеса и заряжать батарею. Параллельные гибриды эффективны на шоссе, но малоэффективны в городе. Несмотря на простоту реализации этой схемы, она не позволяет значительно улучшить как экологические параметры, так и эффективность использования ДВС.

— Приверженцем такой схемы гибридов является компания "Хонда". Их гибридная система получила название Integrated Motor Assist (Интегрированный помощник двигателя). Она предусматривает, прежде всего, создание бензинового двигателя с увеличенным к.п.д. И только тогда, когда двигателю становится трудно, на помощь ему должен приходить электрический мотор. В этом случае система не требует сложного и дорогостоящего силового блока управления, и, следовательно, себестоимость такого автомобиля оказывается ниже. Система IMA состоит из бензинового двигателя (который предоставляет основной ресурс мощности), электромотора, который предоставляет дополнительную мощность и дополнительной батареи для электромотора. Когда автомобиль с обычным бензиновым двигателем замедляется, его кинетическая энергия гасится сопротивлением мотора (торможение двигателем) или рассеивается в виде тепла при нагреве тормозных дисков и барабанов. Автомобиль с системой IMA начинает тормозить электромотором. Таким образом, электромотор работает как генератор, вырабатывая электричество. Сохранённая при торможении энергия запасается в батарее. И когда автомобиль вновь начнёт ускоряться, батарея отдаст всю накопленную энергию на раскрутку электромотора, который снова перейдёт на свои тяговые функции. А расход бензина уменьшится ровно настолько, сколько энергии было запасено при предыдущих торможениях. В общем, в компании Honda считают, что гибридная система должна быть максимально простой, электрический мотор выполняет лишь одну функцию — помогает двигателю внутреннего сгорания сэкономить как можно больше горючего. Honda выпускает две гибридные модели:Insight и Civic.

• ПОСЛЕДОВАТЕЛЬНО-ПАРАЛЛЕЛЬНАЯ СХЕМА:

— Компания «Тойота» при создании гибридов пошла своим путем. Разработанная японскими инженерами система Hybrid Synergy Drive (HSD) объединяет в себе особенности двух предыдущих типов. В схему параллельного гибрида добавляется отдельный генератор и делитель мощности (планетарный механизм). В результате гибрид приобретает черты последовательного гибрида: автомобиль трогается и движется на малых скоростях только на электротяге. На высоких скоростях и при движении с постоянной скоростью подключается ДВС. При высоких нагрузках (ускорение, движение в гору и т.п.) электродвигатель дополнительно подпитывается от аккумулятора- т.е. гибрид работает как параллельный. Благодаря наличию отдельного генератора, заряжающего батарею, электродвигатель используется только для привода колес и при рекуперативном торможении. Планетарный механизм передает часть м

www.drive2.ru

Гибрид (биология) - это... Что такое Гибрид (биология)?

Гибри́д (от лат. hibrida, hybrida — помесь) — организм (клетка), полученный вследствие скрещивания генетически различающихся форм. Понятие гибрид особенно распространено в ботанике, но применяется и в зоологии.

В промышленном и любительском цветоводстве также используется термин грекс (англ. grex). Введен Карлом Линнеем для использования биноминальной номенклатуры в классификации искусственных гибридов.

Гибриды могут быть внутривидовыми (при скрещивании различных сортов, форм, разновидностей), внутриродовыми (при скрещивании видов принадлежащих одному роду) или межродовыми (при скрещивании видов относящихся к разным родам).
В цветоводстве, гибриды первого поколения называются первичными гибридами.

Возможность искусственного получения гибридов впервые предположил немецкий учёный Р. Камерариус в 1694 году, впервые искусственную гибридизацию осуществил английский садовод Т. Фэрчайлд, скрестив в 1717 году разные виды гвоздик.

Реципрокные гибриды

Реципрокные гибриды появляются в результате реципрокных скрещиваний — гибридизация включающая перемену пола родителей, связанных с каждым генотипом.

Реципрокные эффекты

Различия между реципрокными гибридами — реципрокные эффекты — свидетельствуют о неодинаковом вкладе мужского и женского пола в генотип потомства. Если бы потомки от отца и матери получали одинаковую генетическую информацию, то не должно было быть никаких реципрокных эффектов.

Измерение реципрокных эффектов

Для измерения реципрокных эффектов (r) можно использовать выражение:

где A и B — значения признака для исходных скрещиваемых форм; a — то же самое для гибрида ♂A x ♀B; b — для реципрокного гибрида ♂B x ♀A. Положительное значение r (r > 0) будет означать «отцовский» эффект, отрицательное (r < 0) — «материнский», а абсолютная величина r (│r│) даст относительную оценку этих эффектов в единицах, равных разности значения признака для исходных форм (B — A).

Реципрокные эффекты у птиц

У кур «отцовский» эффект " наблюдался по наследованию инстинкта насиживания (r = 0.45,[1] 0.38[2] и 0.50[3]), половой скороспелости (r = 0.59[4]), яйценоскости (r = 0.32, −2.8, 1.07, 0.11, 0.46,[4] 1.14[5] и 2.71[6]), и живому весу (r = 0.30).[6]

По весу яиц наблюдался «материнский эффект» (r = −1.0).[6]

Реципрокные эффекты у млекопитающих

У свиней «отцовский» эффект " наблюдается по числу позвонков (отбор на длинное туловище) (r = 0.72[7] и 0.74[8]), длине тонкого кишечника (отбор на лучшую оплату корма), и динамике роста (отбор на скороспелость) (r = 1.8).

«Материнский эффект» наблюдался по среднему весу эмбрионов, пищеварительной системы и её частей, длине толстого кишечника и весу новорожденных поросят.[8]

У крупного рогатого скота «отцовский» эффект " наблюдался по удою молока (r = 0.07, 0.39, 0.23) и продукции молочного жира (количество жира) (r = 1.08, 1.79, 0.34).

«Материнский эффект» наблюдался по проценту жира в молоке у коров (r = −0.13, −0.19, −0.05).[5]

Теории реципрокных эффектов

«Материнский эффект»

Материнский эффект может быть обусловлен цитоплазматической наследственностью, гомогаметной конституцией и утробным развитием у млекопитающих. Различают собственно материнский эффект, когда генотип матери проявляется в фенотипе потомства. Молекулы в яйцеклетке, такие как мРНК, могут влиять на ранние стадии процесса развития. Различают также материнское наследование, при котором часть генотипа потомство получает исключительно от матери, например митохондрии и пластиды, содержащие свой собственный геном. При материнском наследовании фенотип потомства отражает его собственный генотип.

«Отцовский эффект»

Большее влияние отца на яйценоскость дочерей у кур объясняли тем, что у птиц гетерогаметным полом является самка, а гомогаметным — самец. Поэтому свою единственную X-хромосому курица получает от отца, и если яйценоскость определяется ею, то тогда все понятно.[2] Эта трактовка может объяснить хромосомный механизм явления у птиц, но для млекопитающих уже неприменима. Удивительно также то, что признаки, проявляющиеся только у женского пола (инстинкт насиживания, скороспелость и яйценоскость у курицы или удой молока и количество молочного жира у коровы), которые, казалось бы, должны передаваться матерью, тем не менее передаются больше отцом.

Межвидовая и межродовая гибридизация

Межвидовая гибридизация часто наблюдается как в природе, так и при культивировании человеком (содержании в неволе) у множества видов растений и животных. В природе в районах соприкосновения близких видов могут формироваться так называемые «гибридные зоны», где гибриды численно преобладают над родительскими формами.

Межвидовая интрогрессивная гибридизация широко распространена у дафний. В некоторых летних популяциях дафний гибриды преобладают, что затрудняет определение границ видов [1]/

Хонорик — выведенный путем селекции гибрид между тремя родительскими видами рода Mustela. Самцы хонориков стерильны, а самки фертильны.

Известный экспериментальный гибрид рафанобрассика (лат. Raphano-brassica) был получен Г. Д. Карпеченко при скрещивании редьки с капустой. Оба вида принадлежат к разным родам и имеют по 18 хромосом. Гибрид, полученный в результате удвоения числа хромосом (36), был способен к размножению, так как в процессе мейоза хромосомы редьки и капусты коньюгировали с себе подобными. Он обладал некоторыми признаками каждого из родителей и сохранял их в чистоте при размножении.[9]

Межродовые гибриды (как естественные, так и полученные селекционерами) известны также в семействах злаков, розоцветных, цитрусовых [2], орхидных и др. Так, гексаплоидный геном мягких пшениц образовался путем объединения диплоидных геномов двух предковых видов пшениц и одного вида близкого рода Aegilops.

В ботанике

Гибридные таксоны растений называются нототаксонами.

По данным AOS начиная с января-марта 2008 года между знаком × и названием гибридного рода должен быть пробел[11].
Пример: × Rhynchosophrocattleya.

В зоологии

Явления стерильности гибридов неоднородны. Наблюдается изменчивость в отношении того, на какой именно стадии проявляется стерильность и каковы её генетические причины.

Нарушение сперматогенеза на стадиях, предшествующих мейозу, — непосредственная причина стерильности у самцов мула; нарушения мейоза — причина стерильности у гибридных самцов при некоторых скрещиваниях между разными видами Drosophila (например, D. pseudoobscura × D. persimilis).
К ограниченной полом стерильности и нежизнеспособности гибридов у раздельнополых животных приложимо обобщение, известное под названием правила Холдейна. Гибриды от межвидовых скрещиваний у раздельнополых животных должны состоять, во всяком случае потенциально, из гетерогаметного пола (несущего хромосомы XY) и гомогаметного (XX) пола. Правило Холдейна гласит, что в тех случаях, когда в проявлении стерильности или нежизнеспособности гибридов существуют половые различия, они наблюдаются чаще у гетерогаметного, чем у гомогаметного пола. У большинства животных, в том числе у млекопитающих и у двукрылых, гетерогаметны самцы. Из правила Холдейна имеются, однако, многочисленные исключения.
Третья стадия развития, на которой может проявляться гибридная стерильность, — это гаметофитное поколение у растений. У цветковых растений из продуктов мейоза непосредственно развиваются гаметофиты — пыльцевые зерна и зародышевые мешки, — которые содержат от двух до нескольких ядер и в которых формируются гаметы. Нежизнеспособность гаметофитов — обычная причина стерильности гибридов у цветковых растений. Мейоз завершается, но нормального развития пыльцы и зародышевых мешков не происходит.
Гибридная стерильность на генетическом уровне может быть обусловлена генными, хромосомными и цитоплазматическими причинами[12].Наиболее широко распространена и обычна генная стерильность. Неблагоприятные сочетания генов родительских типов, принадлежащих к разным видам, могут приводить и действительно приводят к цитологическим отклонениям и нарушениям развития у гибридов, что препятствует образованию гамет. Генетический анализ генной стерильности у гибридов Drosophila (D. pseudoobscura × D. persimilis, D. tnelanogaster × D. simulans и т. п.) показывает, что гены, обусловливающие стерильность, локализованы во всех или почти во всех хромосомах родительского вида [13][14].
Неблагоприятные взаимодействия между цитоплазматическими и ядерными генами также ведут к стерильности межвидовых гибридов в разных группах растений и животных[15].
Виды растений и животных часто различаются по транслокациям, инверсиям и другим перестройкам, которые в гетерозиготном состоянии вызывают полустерильность или стерильность. Степень стерильности пропорциональна числу независимых перестроек: так гетерозиготность по одной транслокации даёт 50%-ную стерильность, по двум независимым транслокациям — 75%-ную стерильность и т. д. Стерильность растений определяется гаметофитом. У гетерозигот по хромосомным перестройкам в результате мейоза образуются дочерние ядра, несущие нехватки и дупликации по определённым участкам; из таких ядер не получается функциональных пыльцевых зёрен и семязачатков. Хромосомная стерильность подобного типа очень часто встречается у межвидовых гибридов цветковых растений.
Течение мейоза у гибрида может быть нарушено либо генными факторами, либо различиями в строении хромосом. Как генная, так и хромосомная стерильность может выражаться в аберрантном течении мейоза. Но типы мейотических аберраций различны. Генная стерильность обычна у гибридов животных, а хромосомная стерильность — у гибридов растений. Генетический анализ некоторых межвидовых гибридов растений показывает, что нередко у одного гибрида наблюдается одновременно и хромосомная, и генная стерильность[12].

Разрушение гибридов

В случаях, когда некий межвидовой гибрид достаточно жизнеспособен и способен к размножению, поколения его потомков будут содержать значительную долю нежизнеспособных, субвитальных, стерильных и полустерильных особей. Эти типы представляют собой неудачные продукты рекомбинации, возникшие при межвидовой гибридизации. Такое подавление мощности и плодовитости в гибридном потомстве называют разрушением гибридов (hybrid breakdown). Разрушение гибридов — последнее звено в последовательности преград, препятствующих межвидовому обмену генами.

Разрушение гибридов неизменно обнаруживается в потомстве межвидовых гибридов у растений, где его легче наблюдать, чем при большинстве скрещиваний у животных[12].

Гибриды, имеющие собственные названия

Реципрокные гибриды

Гибриды в семействе Орхидные

Многие виды одного рода и даже представители различных родов легко скрещиваются между собой, образуя многочисленные гибриды, способные к дальнейшему размножению. Большинство гибридов, появившихся за последние 100 лет, создано искусственно с помощью целенаправленной селекционной работы[16].

Селекция фаленопсисов и других красивоцветущих орхидей развивается в двух направлениях: для срезки и для горшечной культуры.

Некоторые искусственные роды орхидей:

См. также

Примечания

  1. Roberts E., Card L. (1933). V World Poultry Congr., 2, 353.
  2. 1 2 Morley F., Smith J. (1954). «Agric. Gaz. N. S. Wales» 65, N. 1, 17.
  3. Saeki J., Kondo K., et al. (1956). «Jpn. J. Breed.» 6, N. 1, 65.
  4. 1 2 Warren D. (1934). «Genetics» 19 600.
  5. 1 2 Дубинин Н. П., Глембоцкий Я. Л. (1967) Генетика популяций и селекция. М.: Наука с. 487, 496.
  6. 1 2 3 Добрынина А. Я. (1958) Реципрокные скрещивания московских кур и леггорнов. Тр. Ин-та генетики АН СССР, М, № 24, с. 307.
  7. Асланян М. М. (1962) Особенности наследования и эмбрионального развития поросят при скрещивании свиней крупной белой породы и шведский ландрас. Научн. докл. высш. школы, № 4, с. 179.
  8. 1 2 Александров Б. В. (1966) Рентгенографическое исследование варьирования и характера наследования числа позвонков при скрещивании свиней крупной белой породы и ландрас. Генетика. 2 № 7, с. 52.
  9. К. Вилли (1964) Биология. М. Мир. 678 с.
  10. Венский международный кодекс ботанической номенклатуры (2006)
  11. Dateline London, England – May 20, 2008. RHS Advisory Panel on Orchid Hybrid Registration (APOHR) Meeting.
  12. 1 2 3 Грант В. Эволюция организмов. М.: Мир, 1980. 480 с
  13. Dobzhansky Th. 1951. Genetics and the Origin of Species, 1st, 2d, and 3d eds. Columbia University Press, New York
  14. Dobzhansky Th. 1970. Genetics of the Evolutionary Process. Columbia University Press, New York
  15. Grun P. 1976. Cytoplasmic Genetics and Evolution. Columbia University Press, New York
  16. Ежек Зденек, Орхидеи. Иллюстрированная энциклопедия. Издательство: Лабиринт, 2005 г

dic.academic.ru

Гибрид — Википедия. Что такое Гибрид

Гибри́д (от лат. hibrida, hybrida — помесь) — организм или клетка, полученные вследствие скрещивания генетически различающихся форм.

Понятие гибрид особенно распространено в ботанике, но применяется и в зоологии. Возможность искусственного получения гибридов впервые предположил немецкий учёный Р. Камерариус в 1694 году. Впервые искусственную гибридизацию осуществил английский садовод Томас Фэйрчайлд, скрестив в 1717 году разные виды гвоздик.

Терминология

В XVIII веке гибриды в русском народном языке назывались «ублюдками». В 1800 году Смеловский Т. А. ввёл термин «помеси», который просуществовал весь XIX век, и только в 1896 году А. Н. Бекетов предложил термин «гибриды»[1].

Гибриды могут быть внутриродовыми (при скрещивании видов принадлежащих одному роду) или межродовыми (при скрещивании видов, относящихся к разным родам).

В промышленном и любительском цветоводстве также используется термин грекс (англ. grex), который был введён Карлом Линнеем для использования биноминальной номенклатуры в классификации искусственных гибридов.

В цветоводстве гибриды первого поколения называются первичными гибридами.

Реципрокные гибриды

Реципрокные гибриды появляются в результате реципрокных скрещиваний — гибридизация, включающая перемену пола родителей, связанных с каждым генотипом.

Реципрокные эффекты

Различия между реципрокными гибридами — реципрокные эффекты — свидетельствуют о неодинаковом вкладе мужского и женского пола в генотип потомства. Если бы потомки от отца и матери получали одинаковую генетическую информацию, то не должно было быть никаких реципрокных эффектов.

Измерение реципрокных эффектов

Для измерения реципрокных эффектов (r) можно использовать выражение:

r=b−aB−A{\displaystyle r={\frac {b-a}{B-A}}}

где A и B — значения признака для исходных скрещиваемых форм; a — то же самое для гибрида ♂A x ♀B; b — для реципрокного гибрида ♂B x ♀A. Положительное значение r (r > 0) будет означать «отцовский» эффект, отрицательное (r < 0) — «материнский», а абсолютная величина r (│r│) даст относительную оценку этих эффектов в единицах, равных разности значения признака для исходных форм (B — A).

Реципрокные эффекты у птиц

У кур «отцовский» эффект наблюдался по наследованию инстинкта насиживания (r = 0.45[2], 0.38[3] и 0.50[4]), половой скороспелости (r = 0.59[5]), яйценоскости (r = 0.32, −2.8, 1.07, 0.11, 0.46[5], 1.14[6] и 2.71[7]), и живому весу (r = 0.30)[7].

По весу яиц наблюдался «материнский эффект» (r = −1.0)[7].

Реципрокные эффекты у млекопитающих

У свиней «отцовский» эффект наблюдается по числу позвонков (отбор на длинное туловище) (r = 0.72[8] и 0.74[9]), длине тонкого кишечника (отбор на лучшую оплату корма), и динамике роста (отбор на скороспелость) (r = 1.8).

«Материнский эффект» наблюдался по среднему весу эмбрионов, пищеварительной системы и её частей, длине толстого кишечника и весу новорожденных поросят[9].

У крупного рогатого скота «отцовский» эффект наблюдался по удою молока (r = 0.07, 0.39, 0.23) и продукции молочного жира (количество жира) (r = 1.08, 1.79, 0.34).

«Материнский эффект» наблюдался по проценту жира в молоке у коров (r = −0.13, −0.19, −0.05)[6].

Теории реципрокных эффектов

«Материнский эффект»

Материнский эффект может быть обусловлен цитоплазматической наследственностью, гомогаметной конституцией и утробным развитием у млекопитающих. Различают собственно материнский эффект, когда генотип матери проявляется в фенотипе потомства. Молекулы в яйцеклетке, такие как мРНК, могут влиять на ранние стадии процесса развития. Различают также материнское наследование, при котором часть генотипа потомство получает исключительно от матери, например митохондрии и пластиды, содержащие свой собственный геном. При материнском наследовании фенотип потомства отражает его собственный генотип.

«Отцовский эффект»

Большее влияние отца на яйценоскость дочерей у кур объясняли тем, что у птиц гетерогаметным полом является самка, а гомогаметным — самец. Поэтому свою единственную X-хромосому курица получает от отца, и если яйценоскость определяется ею, то тогда все понятно[3]. Эта трактовка может объяснить хромосомный механизм явления у птиц, но для млекопитающих уже неприменима. Удивительно также то, что признаки, проявляющиеся только у женского пола (инстинкт насиживания, скороспелость и яйценоскость у курицы или удой молока и количество молочного жира у коровы), которые, казалось бы, должны передаваться матерью, тем не менее передаются больше отцом.

Межвидовая и межродовая гибридизация

Межвидовая гибридизация часто наблюдается как в природе, так и при культивировании человеком (содержании в неволе) у множества видов растений и животных. В природе в районах соприкосновения близких видов могут формироваться так называемые «гибридные зоны», где гибриды численно преобладают над родительскими формами.

Межвидовая интрогрессивная гибридизация широко распространена у дафний. В некоторых летних популяциях дафний гибриды преобладают, что затрудняет определение границ видов[10].

Хонорик — выведенный путём селекции гибрид между тремя родительскими видами рода Mustela. Самцы хонориков стерильны, а самки фертильны.

Известный экспериментальный гибрид Рафанобрассика (Raphano-brassica) был получен Г. Д. Карпеченко при скрещивании редьки с капустой. Оба вида принадлежат к разным родам и имеют по 18 хромосом. Гибрид, полученный в результате удвоения числа хромосом (36), был способен к размножению, так как в процессе мейоза хромосомы редьки и капусты коньюгировали с себе подобными. Он обладал некоторыми признаками каждого из родителей и сохранял их в чистоте при размножении[11].

Межродовые гибриды (как естественные, так и полученные селекционерами) известны также в семействах злаков, розовых, цитрусовых[12], орхидных и др. Так, гексаплоидный геном мягких пшениц образовался путём объединения диплоидных геномов двух предковых видов пшениц и одного вида близкого рода Эгилопс (Aegilops).

Гибриды в ботанической номенклатуре

Гибридные таксоны растений называются нототаксонами.

По данным AOS начиная с января-марта 2008 года между знаком × и названием гибридного рода должен быть пробел[14].
Пример: × Rhynchosophrocattleya.

Гибриды в растениеводстве

При создании новых сортов культурных растений получение гибридов осуществляется ручным путём (ручное опыление, удаление метёлок), химическими (гаметоцид) или генетическими (самонесовместимость, мужская стерильность) средствами. Полученные компоненты можно использовать в различных системах контролируемого скрещивания. Цель селекционера заключается в использовании гетерозиса, или жизненной силы гибрида, которая проявляется с наибольшим эффектом в поколении F1, — чтобы получить желаемое преимущество в урожайности или по некоторой другой характеристике в результирующем поколении, или гибриде. Этот гетерозис особенно хорошо выражен в случае скрещиваний между инбредными линиями, но может также показать преимущество в рамках других систем.

Гибрид, полученный путём однократного скрещивания между двумя инбредными линиями, обычно оказывается высоко однородным. Факт наличия гетерозиготности не имеет последствий, так как обычно дальнейшего размножения сверх поколения F1 не проводится, и сорт поддерживается многократным возвратом к контролируемому скрещиванию родительских линий[15].

Гибриды в зоологии

Стерильность гибридов

Явления стерильности гибридов неоднородны. Наблюдается изменчивость в отношении того, на какой именно стадии проявляется стерильность и каковы её генетические причины.

Нарушение сперматогенеза на стадиях, предшествующих мейозу, — непосредственная причина стерильности у самцов мула; нарушения мейоза — причина стерильности у гибридных самцов при некоторых скрещиваниях между разными видами Drosophila (например, D. pseudoobscura × D. persimilis).

К ограниченной полом стерильности и нежизнеспособности гибридов у раздельнополых животных приложимо обобщение, известное под названием «правило Холдейна»[en][16]. Гибриды от межвидовых скрещиваний у раздельнополых животных должны состоять, во всяком случае потенциально, из гетерогаметного пола (несущего хромосомы XY) и гомогаметного (XX) пола. Правило Холдейна гласит, что в тех случаях, когда в проявлении стерильности или нежизнеспособности гибридов существуют половые различия, они наблюдаются чаще у гетерогаметного, чем у гомогаметного пола. У большинства животных, в том числе у млекопитающих и у двукрылых, гетерогаметны самцы. Из правила Холдейна имеются, однако, многочисленные исключения.

Третья стадия развития, на которой может проявляться гибридная стерильность, — это гаметофитное поколение у растений. У цветковых растений из продуктов мейоза непосредственно развиваются гаметофиты — пыльцевые зерна и зародышевые мешки, — которые содержат от двух до нескольких ядер и в которых формируются гаметы. Нежизнеспособность гаметофитов — обычная причина стерильности гибридов у цветковых растений. Мейоз завершается, но нормального развития пыльцы и зародышевых мешков не происходит.

Гибридная стерильность на генетическом уровне может быть обусловлена генными, хромосомными и цитоплазматическими причинами[17]. Наиболее широко распространена и обычна генная стерильность. Неблагоприятные сочетания генов родительских типов, принадлежащих к разным видам, могут приводить и действительно приводят к цитологическим отклонениям и нарушениям развития у гибридов, что препятствует образованию гамет. Генетический анализ генной стерильности у гибридов Drosophila (D. pseudoobscura × D. persimilis, D. melanogaster × D. simulans и т. п.) показывает, что гены, обусловливающие стерильность, локализованы во всех или почти во всех хромосомах родительского вида[18][19].

Неблагоприятные взаимодействия между цитоплазматическими и ядерными генами также ведут к стерильности межвидовых гибридов в разных группах растений и животных[20].

Виды растений и животных часто различаются по транслокациям, инверсиям и другим перестройкам, которые в гетерозиготном состоянии вызывают полустерильность или стерильность. Степень стерильности пропорциональна числу независимых перестроек: так гетерозиготность по одной транслокации даёт 50%-ную стерильность, по двум независимым транслокациям — 75%-ную стерильность и т. д. Стерильность растений определяется гаметофитом. У гетерозигот по хромосомным перестройкам в результате мейоза образуются дочерние ядра, несущие нехватки и дупликации по определённым участкам; из таких ядер не получается функциональных пыльцевых зёрен и семязачатков. Хромосомная стерильность подобного типа очень часто встречается у межвидовых гибридов цветковых растений.

Течение мейоза у гибрида может быть нарушено либо генными факторами, либо различиями в строении хромосом. Как генная, так и хромосомная стерильность может выражаться в аберрантном течении мейоза. Но типы мейотических аберраций различны. Генная стерильность обычна у гибридов животных, а хромосомная стерильность — у гибридов растений. Генетический анализ некоторых межвидовых гибридов растений показывает, что нередко у одного гибрида наблюдается одновременно и хромосомная, и генная стерильность[17].

Разрушение гибридов

В случаях, когда некий межвидовой гибрид достаточно жизнеспособен и способен к размножению, поколения его потомков будут содержать значительную долю нежизнеспособных, субвитальных, стерильных и полустерильных особей. Эти типы представляют собой неудачные продукты рекомбинации, возникшие при межвидовой гибридизации. Такое подавление мощности и плодовитости в гибридном потомстве называют разрушением гибридов (англ. hybrid breakdown). Разрушение гибридов — последнее звено в последовательности преград, препятствующих межвидовому обмену генами.

Разрушение гибридов неизменно обнаруживается в потомстве межвидовых гибридов у растений, где его легче наблюдать, чем при большинстве скрещиваний у животных[17].

Гибриды, имеющие собственные названия

Гибриды в семействе Орхидные

Многие виды одного рода и даже представители различных родов легко скрещиваются между собой, образуя многочисленные гибриды, способные к дальнейшему размножению. Большинство гибридов, появившихся за последние 100 лет, создано искусственно с помощью целенаправленной селекционной работы[23].

Селекция фаленопсисов и других красивоцветущих орхидей развивается в двух направлениях: для срезки и для горшечной культуры.

Некоторые искусственные роды орхидей:

См. также

Примечания

  1. Щербакова А. А. История ботаники в России до 60-х годов XIX века (додарвиновский период). — Новосибирск: "Наука", 1979. — 368 с.
  2. ↑ Roberts E., Card L. (1933). V World Poultry Congr., 2, 353.
  3. 1 2 Morley F., Smith J. (1954). «Agric. Gaz. N. S. Wales» 65, N. 1, 17.
  4. ↑ Saeki J., Kondo K., et al. (1956). «Jpn. J. Breed.» 6, N. 1, 65.
  5. 1 2 Warren D. (1934). «Genetics» 19 600.
  6. 1 2 Дубинин Н. П., Глембоцкий Я. Л. (1967) Генетика популяций и селекция. — М.: Наука с. 487, 496.
  7. 1 2 3 Добрынина А. Я. (1958) Реципрокные скрещивания московских кур и леггорнов. Тр. Ин-та генетики АН СССР, М, № 24, с. 307.
  8. ↑ Асланян М. М. (1962) Особенности наследования и эмбрионального развития поросят при скрещивании свиней крупной белой породы и шведский ландрас. Научн. докл. высш. школы, № 4, с. 179.
  9. 1 2 Александров Б. В. (1966) Рентгенографическое исследование варьирования и характера наследования числа позвонков при скрещивании свиней крупной белой породы и ландрас. Генетика. 2 № 7, с. 52.
  10. ↑ Spatial and temporal patterns of sexual reproduction in a hybrid Daphnia species complex (недоступная ссылка)
  11. ↑ К. Вилли (1964) Биология. — М., Мир., 678 с.
  12. ↑ http://www.floraname.ru/nazvaniya-gibridy/mezhrodovye-gibridy (недоступная ссылка)
  13. ↑ Венский международный кодекс ботанической номенклатуры (2006)
  14. ↑ Dateline London, England — May 20, 2008. RHS Advisory Panel on Orchid Hybrid Registration (APOHR) Meeting. Архивировано 24 декабря 2010 года.
  15. ↑ Руководство для новых типов и видов. Международный союз по охране новых сортов растений (UPOV). 2002 г.
  16. Фельдман Г.Э. Джон Бэрдон Сандерсон Холдейн 1892-1964. Глава II. Изд. "Наука", Москва, 1976 г.
  17. 1 2 3 Грант В. Эволюция организмов. М.: Мир, 1980. 480 с
  18. ↑ Dobzhansky Th. 1951. Genetics and the Origin of Species, 1st, 2d, and 3d eds. Columbia University Press, New York
  19. ↑ Dobzhansky Th. 1970. Genetics of the Evolutionary Process. Columbia University Press, New York
  20. ↑ Grun P. 1976. Cytoplasmic Genetics and Evolution. Columbia University Press, New York
  21. Бабаев А. А., Винберг Г. Г., Заварзин Г. А. и др. Биологический энциклопедический словарь / Гиляров М. С.. — М.: Сов. Энциклопедия, 1986.
  22. ↑ Медведи гризли заселяют Манитобу — Наука и техника — Биология — Компьюлента
  23. ↑ Ежек Зденек, Орхидеи. Иллюстрированная энциклопедия. Издательство: Лабиринт, 2005 г

Ссылки

wiki.sc

гибрид - это... Что такое гибрид?

  • ГИБРИД — (от лат. hibrida, hybrida помесь), организм (клетка), полученный в результате объединения генетич. материала генотипически разных организмов (клеток), т. е. гибридизации. В природных популяциях амфимиктич. организмов (т. е. раздельнополых… …   Биологический энциклопедический словарь

  • гибрид — помесь, бестер, амфидиплоид, инер; тритикале, катабу, катало, зеброид, зебоид, грифон, церападус, земклуника Словарь русских синонимов. гибрид см. помесь Словарь синонимов русского языка. Практический справочник. М.: Русский язык. З. Е. Александ …   Словарь синонимов

  • гибрид — ГИБРИД, а, м. Ирон. бран. Ну ты, гибрид! гибрид твою мать! черт возьми, елки палки! Возм. из шк., детск.; эвфем. от нецензурного …   Словарь русского арго

  • ГИБРИД — ГИБРИД, потомство двух родителей с различной комбинацией ГЕНОВ. Часто относится к потомству от скрещивания двух разновидностей вида или двух разных видов. Большинство межвидовых гибридов, растений или животных, неспособны давать потомство. Иногда …   Научно-технический энциклопедический словарь

  • Гибрид — организм, полученный в результате скрещивания разнородных в генетическом отношении родительских форм: видов, пород, линий и т.п. См. также: Гибриды Организмы Селекция Финансовый словарь Финам …   Финансовый словарь

  • ГИБРИД — (от лат. hibrida помесь) организм, полученный в результате скрещивания генетически различающихся родительских форм (видов, пород, линий и др.) …   Большой Энциклопедический словарь

  • Гибрид — (лат. hybrida, hibrida помесь) Г. сочинение, составленное из разнородных и не сочетавшихся в классической традиции друг с другом элементов, являющих совместимость несовместимого. Г. отражает тенденцию синестезии искусства. Г. могут быть жанровыми …   Энциклопедия культурологии

  • ГИБРИД — ГИБРИД, гибрида, муж. (лат. hibrida помесь). Животное или растение, происходящее от скрещения разных пород (биол.). || язык, происходящий от скрещения языков разных типов (линг.). «Абхазский язык и с ним сванский представляют скрещенные языки или …   Толковый словарь Ушакова

  • ГИБРИД — ГИБРИД, а, муж. Животное или растение, полученное в результате скрещивания генетически (по видам, линиям, породам, сортам) различающихся особей. | прил. гибридный, ая, ое. Гибридные сорта. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 …   Толковый словарь Ожегова

  • Гибрид — потомок организмов с несхожими генотипами, часто потомок от скрещивания различных видов... Источник: УКАЗАНИЯ ПО ЛЕСНОМУ СЕМЕНОВОДСТВУ В РОССИЙСКОЙ ФЕДЕРАЦИИ (утв. Рослесхозом 11.01.2000) …   Официальная терминология

  • гибрид — а, м. hybride m., лат. hibrida.1. Организм растения или животного, полученный в результате гибридизации. БАС 2. Желаю сказать о результатах моего опыта искусственного оплодотворения через перекрещивание растительной пыли, отчего получаются новые… …   Исторический словарь галлицизмов русского языка

  • popular.academic.ru

    Гибрид - это... Что такое Гибрид?

  • ГИБРИД — (от лат. hibrida, hybrida помесь), организм (клетка), полученный в результате объединения генетич. материала генотипически разных организмов (клеток), т. е. гибридизации. В природных популяциях амфимиктич. организмов (т. е. раздельнополых… …   Биологический энциклопедический словарь

  • гибрид — помесь, бестер, амфидиплоид, инер; тритикале, катабу, катало, зеброид, зебоид, грифон, церападус, земклуника Словарь русских синонимов. гибрид см. помесь Словарь синонимов русского языка. Практический справочник. М.: Русский язык. З. Е. Александ …   Словарь синонимов

  • гибрид — ГИБРИД, а, м. Ирон. бран. Ну ты, гибрид! гибрид твою мать! черт возьми, елки палки! Возм. из шк., детск.; эвфем. от нецензурного …   Словарь русского арго

  • ГИБРИД — ГИБРИД, потомство двух родителей с различной комбинацией ГЕНОВ. Часто относится к потомству от скрещивания двух разновидностей вида или двух разных видов. Большинство межвидовых гибридов, растений или животных, неспособны давать потомство. Иногда …   Научно-технический энциклопедический словарь

  • Гибрид — организм, полученный в результате скрещивания разнородных в генетическом отношении родительских форм: видов, пород, линий и т.п. См. также: Гибриды Организмы Селекция Финансовый словарь Финам …   Финансовый словарь

  • ГИБРИД — (от лат. hibrida помесь) организм, полученный в результате скрещивания генетически различающихся родительских форм (видов, пород, линий и др.) …   Большой Энциклопедический словарь

  • Гибрид — (лат. hybrida, hibrida помесь) Г. сочинение, составленное из разнородных и не сочетавшихся в классической традиции друг с другом элементов, являющих совместимость несовместимого. Г. отражает тенденцию синестезии искусства. Г. могут быть жанровыми …   Энциклопедия культурологии

  • ГИБРИД — ГИБРИД, гибрида, муж. (лат. hibrida помесь). Животное или растение, происходящее от скрещения разных пород (биол.). || язык, происходящий от скрещения языков разных типов (линг.). «Абхазский язык и с ним сванский представляют скрещенные языки или …   Толковый словарь Ушакова

  • ГИБРИД — ГИБРИД, а, муж. Животное или растение, полученное в результате скрещивания генетически (по видам, линиям, породам, сортам) различающихся особей. | прил. гибридный, ая, ое. Гибридные сорта. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 …   Толковый словарь Ожегова

  • Гибрид — потомок организмов с несхожими генотипами, часто потомок от скрещивания различных видов... Источник: УКАЗАНИЯ ПО ЛЕСНОМУ СЕМЕНОВОДСТВУ В РОССИЙСКОЙ ФЕДЕРАЦИИ (утв. Рослесхозом 11.01.2000) …   Официальная терминология

  • гибрид — а, м. hybride m., лат. hibrida.1. Организм растения или животного, полученный в результате гибридизации. БАС 2. Желаю сказать о результатах моего опыта искусственного оплодотворения через перекрещивание растительной пыли, отчего получаются новые… …   Исторический словарь галлицизмов русского языка

  • dic.academic.ru

    Что такое Гибрид?! — DRIVE2

    — Совершенствование двигателей внутреннего сгорания (ДВС) едва-едва поспевает за предъявляемыми к ним требованиями. С одной стороны, потребители с мечтами об одновременно мощном и экономичном моторе, с другой — экологи, ужесточающие нормы токсичности. А в завершение — геологи, все настойчивее напоминающие об истощении запасов «черного золота». Одним из вариантов решения этой проблемы являются гибридные силовые установки, состоящие из обычного ДВС и электродвигателя. В отличие от электромобилей и автомобилей на топливных элементах, которые все еще остаются "автомобилями будущего", гибриды уже с 1997 года выпускаются серийно.

    — Давайте сравним автомобиль с обычным ДВС и электромобиль. Обыкновенный автомобиль способен проехать без дозаправки четыре-пять сотен километров и при этом отравить атмосферу некоторым объёмом вредных веществ. Заправочных станций предостаточно в любом регионе, и пополнить запасы топлива можно за считанные минуты. Электромобиль может проехать на одном заряде батарей порядка 80-160 км. Он экологически чист, бесшумен и практически безупречен до того момента, пока не наступает очередь подзарядки аккумуляторов. У существующих в наше время «электрических» машин этот процесс длится несколько часов.
    Гибридные автомобили берут все лучшее от обоих моторов: ДВС и электрического. Достоинство первого – в удобном энергоносителе, жидком топливе, а второго – в выдающихся моментных характеристиках. В отличие от ДВС, электромотор не нужно заводить и «раскручивать». Он может «стоять и ждать» не потребляя энергии. Но как только дали ток – сразу получили максимальную тягу на колесах. Электродвигатель эффективнее двигателя внутреннего сгорания в режиме частых стартов и стопов (т.е., при езде в городском цикле). Двигатель внутреннего сгорания, наоборот, более эффективен на постоянных, оптимальных для данного двигателя оборотах.
    В гибриде оба двигателя работают друг на друга. ДВС крутит генератор и питает энергией электромотор. Тот, в свою очередь, позволяет ДВС работать без резких разгонных нагрузок, в наиболее благоприятных режимах. Практически все современные гибриды имеют систему рекуперации или, по-русски, «возврата энергии». Суть ее в том, что при торможении или при движении машины накатом, электродвигатели начинают крутиться от колес и работать как генераторы, заряжая батарею. Отсюда – меньший износ, экологичность и экономичность (особенно в городском цикле.)
    Итак, перед нами технологичный прогрессивный автомобиль, в котором нивелируются недостатки и объединяются достоинства двух моторов. Но., рано хлопать в ладоши, и послушаем, что говорят скептики.

    — Гибридные автомобили сложнее и дороже традиционных автомобилей с двигателями внутреннего сгорания. Аккумуляторные батареи имеют небольшой диапазон рабочих температур, не любят морозов, подвержены саморазряду, срок службы их ограничен несколькими годами. А «экономность» гибрида прямо связана с состоянием АКБ. Кроме того, существует проблема утилизации отработанных батарей. Гибриды дороже в ремонте, да и за сам ремонт возьмется далеко не каждый. Кроме того, высокую экологичность и экономичность гибридов многие тоже ставят под сомнение. Так, ряд тестов, проведенных авторитетными автомобильными изданиями, показал, что гибриды дают заметную экономию топлива только в городе, при движении же в смешанном цикле незначительно, а за городом существенно проигрывают современным дизелям. Почетное звание «Самый экологичный автомобиль года» в 2007 и 2008 годах присуждалось также автомобилям с дизельными моторами.
    Рассмотрим подробнее, какими бывают и как устроены гибриды.
    По степени гибридизации их делят на «умеренные», «полные» и plug-in. «Полный» в состоянии двигаться лишь на электричестве, не потребляя топлива. «Умеренный» всегда задействует ДВС, а электромотор подключается, если требуется дополнительная мощность. Гибрид с подзарядкой (plug-in hybrid) — такой гибрид можно включать в розетку для подзарядки. В результате обладатель подобного гибрида получает все преимущества электрического автомобиля, без самого большого недостатка: ограниченного пробега на одном заряде. Когда электрический заряд заканчивается, подключается ДВС и автомобиль превращается в обычный гибрид.
    По принципу взаимодействия электрической и топливной составляющих авто, гибридные приводы принято разделять на три вида: последовательный, параллельный и последовательно-параллельный.

    • ПОСЛЕДОВАТЕЛЬНАЯ СХЕМА:

    — Это — самая простая гибридная конфигурация. ДВС используется только для привода генератора, а вырабатываемая последним электроэнергия заряжает аккумуляторную батарею и питает электродвигатель, который и вращает ведущие колеса. Это избавляет от необходимости в коробке передач и сцеплении. Для подзарядки аккумулятора также используется рекуперативное торможение. Свое название схема получила потому, что поток мощности поступает на ведущие колеса, проходя ряд последовательных преобразований. От механической энергии, вырабатываемой ДВС в электрическую, вырабатываемую генератором, и опять в механическую. При этом часть энергии неизбежно теряется. Последовательный гибрид позволяет использовать ДВС малой мощности, причем он постоянно работает в диапазоне максимального КПД, или же его можно совсем отключить. При отключении ДВС электродвигатель и батарея в состоянии обеспечить необходимую мощность для движения. Поэтому они, в отличие от ДВС, должны быть более мощными, а, значит, они имеют и большую стоимость. Наиболее эффективна последовательная схема при движении в режиме частых остановок, торможений и ускорений, движении на низкой скорости, т.е. в городе. Поэтому используют ее в городских автобусах и других видах городского транспорта. По такому принципу работают также большие карьерные самосвалы, где необходимо передать большой крутящий момент на колеса, и не требуются высокие скорости движения.

    • ПАРАЛЛЕЛЬНАЯ СХЕМА:

    — Здесь ведущие колеса приводятся в движение и ДВС, и электродвигателем (который должен быть обратимым, т.е. может работать в качестве генератора). Для их согласованной параллельной работы используется компьютерное управление. При этом сохраняется необходимость в обычной трансмиссии, и двигателю приходится работать в неэффективных переходных режимах. Момент, поступающий от двух источников, распределяется в зависимости от условий движения: в переходных режимах (старт, ускорение) в помощь ДВС подключается электродвигатель, а в устоявшихся режимах и при торможении он работает как генератор, заряжая аккумулятор. Таким образом, в параллельных гибридах большую часть времени работает ДВС, а электродвигатель используется для помощи ему. Поэтому параллельные гибриды могут использовать меньшую аккумуляторную батарею, по сравнению с последовательными. Так как ДВС непосредственно связан с колесами, то и потери мощности значительно меньше, чем в последовательном гибриде. Подобная конструкция достаточно проста, но ее недостатком является то, что обратимая машина параллельного гибрида не может одновременно приводить в движение колеса и заряжать батарею. Параллельные гибриды эффективны на шоссе, но малоэффективны в городе. Несмотря на простоту реализации этой схемы, она не позволяет значительно улучшить как экологические параметры, так и эффективность использования ДВС.

    — Приверженцем такой схемы гибридов является компания "Хонда". Их гибридная система получила название Integrated Motor Assist (Интегрированный помощник двигателя). Она предусматривает, прежде всего, создание бензинового двигателя с увеличенным к.п.д. И только тогда, когда двигателю становится трудно, на помощь ему должен приходить электрический мотор. В этом случае система не требует сложного и дорогостоящего силового блока управления, и, следовательно, себестоимость такого автомобиля оказывается ниже. Система IMA состоит из бензинового двигателя (который предоставляет основной ресурс мощности), электромотора, который предоставляет дополнительную мощность и дополнительной батареи для электромотора. Когда автомобиль с обычным бензиновым двигателем замедляется, его кинетическая энергия гасится сопротивлением мотора (торможение двигателем) или рассеивается в виде тепла при нагреве тормозных дисков и барабанов. Автомобиль с системой IMA начинает тормозить электромотором. Таким образом, электромотор работает как генератор, вырабатывая электричество. Сохранённая при торможении энергия запасается в батарее. И когда автомобиль вновь начнёт ускоряться, батарея отдаст всю накопленную энергию на раскрутку электромотора, который снова перейдёт на свои тяговые функции. А расход бензина уменьшится ровно настолько, сколько энергии было запасено при предыдущих торможениях. В общем, в компании Honda считают, что гибридная система должна быть максимально простой, электрический мотор выполняет лишь одну функцию — помогает двигателю внутреннего сгорания сэкономить как можно больше горючего. Honda выпускает две гибридные модели:Insight и Civic.

    • ПОСЛЕДОВАТЕЛЬНО-ПАРАЛЛЕЛЬНАЯ СХЕМА:

    — Компания «Тойота» при создании гибридов пошла своим путем. Разработанная японскими инженерами система Hybrid Synergy Drive (HSD) объединяет в себе особенности двух предыдущих типов. В схему параллельного гибрида добавляется отдельный генератор и делитель мощности (планетарный механизм). В результате гибрид приобретает черты последовательного гибрида: автомобиль трогается и движется на малых скоростях только на электротяге. На высоких скоростях и при движении с постоянной скоростью подключается ДВС. При высоких нагрузках (ускорение, движение в гору и т.п.) электродвигатель дополнительно подпитывается от аккумулятора- т.е. гибрид работает как параллельный. Благодаря наличию отдельного генератора, заряжающего батарею, электродвигатель используется только для привода колес и при рекуперативном торможении. Планетарный механизм передает часть мощности ДВС на колеса, а остальную часть на генератор, который либо питает электродвигател

    www.drive2.ru

    Гибрид - это... Что такое Гибрид?

  • ГИБРИД — (от лат. hibrida, hybrida помесь), организм (клетка), полученный в результате объединения генетич. материала генотипически разных организмов (клеток), т. е. гибридизации. В природных популяциях амфимиктич. организмов (т. е. раздельнополых… …   Биологический энциклопедический словарь

  • гибрид — помесь, бестер, амфидиплоид, инер; тритикале, катабу, катало, зеброид, зебоид, грифон, церападус, земклуника Словарь русских синонимов. гибрид см. помесь Словарь синонимов русского языка. Практический справочник. М.: Русский язык. З. Е. Александ …   Словарь синонимов

  • гибрид — ГИБРИД, а, м. Ирон. бран. Ну ты, гибрид! гибрид твою мать! черт возьми, елки палки! Возм. из шк., детск.; эвфем. от нецензурного …   Словарь русского арго

  • ГИБРИД — ГИБРИД, потомство двух родителей с различной комбинацией ГЕНОВ. Часто относится к потомству от скрещивания двух разновидностей вида или двух разных видов. Большинство межвидовых гибридов, растений или животных, неспособны давать потомство. Иногда …   Научно-технический энциклопедический словарь

  • Гибрид — организм, полученный в результате скрещивания разнородных в генетическом отношении родительских форм: видов, пород, линий и т.п. См. также: Гибриды Организмы Селекция Финансовый словарь Финам …   Финансовый словарь

  • ГИБРИД — (от лат. hibrida помесь) организм, полученный в результате скрещивания генетически различающихся родительских форм (видов, пород, линий и др.) …   Большой Энциклопедический словарь

  • Гибрид — (лат. hybrida, hibrida помесь) Г. сочинение, составленное из разнородных и не сочетавшихся в классической традиции друг с другом элементов, являющих совместимость несовместимого. Г. отражает тенденцию синестезии искусства. Г. могут быть жанровыми …   Энциклопедия культурологии

  • ГИБРИД — ГИБРИД, гибрида, муж. (лат. hibrida помесь). Животное или растение, происходящее от скрещения разных пород (биол.). || язык, происходящий от скрещения языков разных типов (линг.). «Абхазский язык и с ним сванский представляют скрещенные языки или …   Толковый словарь Ушакова

  • ГИБРИД — ГИБРИД, а, муж. Животное или растение, полученное в результате скрещивания генетически (по видам, линиям, породам, сортам) различающихся особей. | прил. гибридный, ая, ое. Гибридные сорта. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 …   Толковый словарь Ожегова

  • Гибрид — потомок организмов с несхожими генотипами, часто потомок от скрещивания различных видов... Источник: УКАЗАНИЯ ПО ЛЕСНОМУ СЕМЕНОВОДСТВУ В РОССИЙСКОЙ ФЕДЕРАЦИИ (утв. Рослесхозом 11.01.2000) …   Официальная терминология

  • гибрид — а, м. hybride m., лат. hibrida.1. Организм растения или животного, полученный в результате гибридизации. БАС 2. Желаю сказать о результатах моего опыта искусственного оплодотворения через перекрещивание растительной пыли, отчего получаются новые… …   Исторический словарь галлицизмов русского языка

  • dic.academic.ru

    ГИБРИД - это... Что такое ГИБРИД?

  • ГИБРИД — (от лат. hibrida, hybrida помесь), организм (клетка), полученный в результате объединения генетич. материала генотипически разных организмов (клеток), т. е. гибридизации. В природных популяциях амфимиктич. организмов (т. е. раздельнополых… …   Биологический энциклопедический словарь

  • гибрид — помесь, бестер, амфидиплоид, инер; тритикале, катабу, катало, зеброид, зебоид, грифон, церападус, земклуника Словарь русских синонимов. гибрид см. помесь Словарь синонимов русского языка. Практический справочник. М.: Русский язык. З. Е. Александ …   Словарь синонимов

  • гибрид — ГИБРИД, а, м. Ирон. бран. Ну ты, гибрид! гибрид твою мать! черт возьми, елки палки! Возм. из шк., детск.; эвфем. от нецензурного …   Словарь русского арго

  • ГИБРИД — ГИБРИД, потомство двух родителей с различной комбинацией ГЕНОВ. Часто относится к потомству от скрещивания двух разновидностей вида или двух разных видов. Большинство межвидовых гибридов, растений или животных, неспособны давать потомство. Иногда …   Научно-технический энциклопедический словарь

  • Гибрид — организм, полученный в результате скрещивания разнородных в генетическом отношении родительских форм: видов, пород, линий и т.п. См. также: Гибриды Организмы Селекция Финансовый словарь Финам …   Финансовый словарь

  • Гибрид — (лат. hybrida, hibrida помесь) Г. сочинение, составленное из разнородных и не сочетавшихся в классической традиции друг с другом элементов, являющих совместимость несовместимого. Г. отражает тенденцию синестезии искусства. Г. могут быть жанровыми …   Энциклопедия культурологии

  • ГИБРИД — ГИБРИД, гибрида, муж. (лат. hibrida помесь). Животное или растение, происходящее от скрещения разных пород (биол.). || язык, происходящий от скрещения языков разных типов (линг.). «Абхазский язык и с ним сванский представляют скрещенные языки или …   Толковый словарь Ушакова

  • ГИБРИД — ГИБРИД, а, муж. Животное или растение, полученное в результате скрещивания генетически (по видам, линиям, породам, сортам) различающихся особей. | прил. гибридный, ая, ое. Гибридные сорта. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 …   Толковый словарь Ожегова

  • Гибрид — потомок организмов с несхожими генотипами, часто потомок от скрещивания различных видов... Источник: УКАЗАНИЯ ПО ЛЕСНОМУ СЕМЕНОВОДСТВУ В РОССИЙСКОЙ ФЕДЕРАЦИИ (утв. Рослесхозом 11.01.2000) …   Официальная терминология

  • гибрид — а, м. hybride m., лат. hibrida.1. Организм растения или животного, полученный в результате гибридизации. БАС 2. Желаю сказать о результатах моего опыта искусственного оплодотворения через перекрещивание растительной пыли, отчего получаются новые… …   Исторический словарь галлицизмов русского языка

  • dic.academic.ru

    гибрид — Викисловарь

    Морфологические и синтаксические свойства[править]

    падеж ед. ч. мн. ч.
    Им. гибри́д гибри́ды
    Р. гибри́да гибри́дов
    Д. гибри́ду гибри́дам
    В. гибри́д гибри́ды
    Тв. гибри́дом гибри́дами
    Пр. гибри́де гибри́дах

    гиб-ри́д

    Существительное, неодушевлённое, мужской род, 2-е склонение (тип склонения 1a по классификации А. А. Зализняка). В знач. животное слово склоняется по образцу для одушевлённых существительных (кого/что? — гибрида, гибридов).

    Корень: -гибрид- [Тихонов, 1996].

    Произношение[править]

    Семантические свойства[править]

    Значение[править]
    1. биол. животное или растение, появившееся в результате скрещивания генетически различных особей, а также целая порода таких организмов ◆ Отсутствует пример употребления (см. рекомендации).
    2. автомоб. автомобиль, оснащённый как двигателем внутреннего сгорания, так и электродвигателем ◆ Отсутствует пример употребления (см. рекомендации).
    3. лингв. язык, происходящий от скрещения языков разных типов ◆ Отсутствует пример употребления (см. рекомендации).
    4. перен. что-либо совмещающее признаки различных предметов, явлений; помесь ◆ Отсутствует пример употребления (см. рекомендации).
    5. рег. (Юг России) особый подвид рыбы, обитающий на юге России, согласно некоторым источникам представляет из себя карпокарася ◆ Отсутствует пример употребления (см. рекомендации).
    Синонимы[править]
    1. помесь, полукровка
    2. гибридный автомобиль
    3. -
    4. помесь, смесь
    5. карпокарась, речной карась
    Антонимы[править]
    1. чистокровка
    2. -
    3. -
    4. -
    5. -
    Гиперонимы[править]
    1. особь; порода
    2. автомобиль, разг.: машина
    3. смешанный язык; язык
    4. -
    5. серебряный карась, карп
    Гипонимы[править]
    1. ублюдок
    2. -
    3. -
    4. -
    5. -

    Родственные слова[править]

    Этимология[править]

    Происходит от лат. hybrida (варианты: hibrida, ibrida) «помесь; ребёнок римлянина и неримлянки»; возможно из др.-греч. Русск. гибрид, по-видимому, заимств. через франц. hybride. Использованы данные Толкового словаря русского языка с включением сведений о происхождении слов (2007). См. Список литературы.

    Фразеологизмы и устойчивые сочетания[править]

    Перевод[править]

    Библиография[править]

    ru.wiktionary.org


    Смотрите также