Двигатель внутреннего сгорания краткое содержание


Двигатель внутреннего сгорания — урок. Физика, 8 класс.

Обрати внимание!

Двигатель внутреннего сгорания — распространённый вид теплового двигателя, который работает на жидком топливе (бензин, керосин, нефть) или горючем газе.

 

Двигатель состоит из цилиндра, в котором перемещается поршень \( 3\), соединённый при помощи шатуна \(4\) с коленчатым валом \(5\).

 

Два клапана, впускной \(1\) и выпускной \(2\), при работе двигателя автоматически открываются и закрываются в нужные моменты.

 

Через клапан \(1\) в цилиндр поступает горючая смесь, которая воспламеняется при помощи свечи \(6\), а через клапан \(2\) выпускаются отработавшие газы.

 

Топливо в нём сгорает прямо в цилинде.

 

 

Крайние положения поршня в цилиндре называют мёртвыми точками.

 

Расстояние, проходимое поршнем между мёртвыми точками, называют ходом поршня.

 

Такие двигатели называют четырёхтактными, т.к. рабочий цикл происходит за четыре хода или такта: впуск (а), сжатие (б), рабочий ход (в) и выпуск (г).

 

 

1 такт (впуск) — при такте впуска поршень от верхней мёртвой точки перемещается к нижней мёртвой точке. Цилиндр заполняется горючей смесью через открытый впускной клапан. Т.е. поршень всасывает горючую смесь.

 

 

2 такт (сжатие) — при такте сжатия поршень от нижней мёртвой точки перемещается к верхней мёртвой точке. Поршень движется вверх. Оба клапана плотно закрыты, и поэтому рабочая смесь сжимается. При сжатии температура смеси и давление повышаются. 

 

3 такт (рабочий ход) —  рабочая смесь воспламеняется от электрической искры, проскакивающей между электродами свечи зажигания. В начале такта рабочего хода сгорающая смесь начинает активно расширяться. А т.к. впускной и выпускной клапаны всё ещё закрыты, то расширяющимся газам остаётся только один единственный выход — давить на подвижный поршень. Поршень под действием этого давления начинает перемещаться к нижней мёртвой точке, создаётся крутящий момент. 

 

 

4 такт (выпуск) — при движении поршня от нижней мёртвой точки к верхней мёртвой точке открывается выпускной клапан (впускной всё ещё закрыт), и отработавшие газы с огромной скоростью выбрасываются из цилиндра двигателя.

 

 

После такта выпуска начинается новый рабочий цикл, всё повторяется.

Для того чтобы вращение вала было более равномерным, двигатель обычно делают многоцилиндровым: 2-, 3-, 4-, 6-, 8-цилиндровым и т.д.

Источники:

http://webmyoffice.ru/media/files/99/dvigatel-moto-2.jpg

http://usauto.ucoz.ru/news/bilet_6/2011-04-26-4

http://autooboz.info/wp-content/uploads/2007/09/dvigatel-vnutrennego-sgoraniya2.jpg

http://dvigyn.com/wpcontent/images_18/princip_raboti_dvigatelya_vnutrennego_sgoraniya_v_4_takta-2.jpg

http://dvigyn.com/wpcontent/images_18/princip_raboti_dvigatelya_vnutrennego_sgoraniya_v_4_takta-3.jpg

www.yaklass.ru

Бензиновый двигатель внутреннего сгорания — Википедия

Бензиновые двигатели — класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. Управление мощностью в данном типе двигателей производится, как правило, регулированием потока воздуха, посредством дроссельной заслонки.

Одним из видов дросселя является карбюраторная дроссельная заслонка, регулирующая поступление горючей смеси в цилиндры двигателя внутреннего сгорания. Рабочий орган представляет собой пластину, закрепленную на вращающейся оси, помещённую в трубу, в которой протекает регулируемая среда. В автомобилях управление дросселем производится с места водителя от ноги педалью. В современных автомобилях нет прямой механической связи между педалью акселератора и дроссельной заслонкой. Заслонка поворачивается с помощью электродвигателя, управляемого электронным блоком управления (ЭБУ). В педальном блоке находится потенциометр, изменяющий своё сопротивление в зависимости от положения педали.

Классификация бензиновых двигателей[править | править код]

См. также: Классификация автотракторных двигателей

Рабочий цикл четырёхтактного двигателя[править | править код]

Как следует из названия, рабочий цикл четырёхтактного двигателя состоит из четырёх основных этапов — тактов.

1. Впуск. Поршень опускается из верхней мёртвой точки (ВМТ) в нижнюю мёртвую точку (НМТ). При этом кулачки распредвала открывают впускной клапан, и через этот клапан в цилиндр засасывается свежая топливно-воздушная смесь.
2. Сжатие. Поршень идёт из НМТ в ВМТ, сжимая рабочую смесь. При этом значительно возрастает температура смеси. Отношение рабочего объёма цилиндра в НМТ и объёма камеры сгорания в ВМТ называется степень сжатия. Степень сжатия — очень важный параметр, обычно, чем она больше, тем больше топливная экономичность двигателя. Однако для двигателя с большей степенью сжатия требуется топливо с бо́льшим октановым числом, которое дороже.
3. Сгорание и расширение (рабочий ход поршня). Незадолго до конца цикла сжатия топливовоздушная смесь поджигается искрой от свечи зажигания. Во время пути поршня из ВМТ в НМТ топливо сгорает, и под действием тепла сгоревшего топлива рабочая смесь расширяется, толкая поршень. Степень «недоворота» коленчатого вала двигателя до ВМТ при поджигании смеси называется углом опережения зажигания. Опережение зажигания необходимо для того, чтобы основная масса бензовоздушной смеси успела воспламениться к моменту, когда поршень будет находиться в ВМТ (процесс воспламенения является медленным процессом относительно скорости работы поршневых систем современных двигателей). При этом использование энергии сгоревшего топлива будет максимальным. Сгорание топлива занимает практически фиксированное время, поэтому для повышения эффективности двигателя нужно увеличивать угол опережения зажигания при повышении оборотов. В старых двигателях эта регулировка производилась механическим устройством, центробежным вакуумным регулятором воздействующим на прерыватель. В более современных двигателях для регулировки угла опережения зажигания используют электронику. В этом случае используется датчик положения коленчатого вала, работающий обычно по индуктивному принципу.
4. Выпуск. После НМТ рабочего цикла открывается выпускной клапан, и движущийся вверх поршень вытесняет отработанные газы из цилиндра двигателя. При достижении поршнем ВМТ выпускной клапан закрывается и цикл начинается сначала.

Необходимо также помнить, что следующий процесс (например, впуск), необязательно должен начинаться в тот момент, когда закончится предыдущий (например, выпуск). Такое положение, когда открыты сразу оба клапана (впускной и выпускной), называется перекрытием клапанов. Перекрытие клапанов необходимо для лучшего наполнения цилиндров горючей смесью, а также для лучшей очистки цилиндров от отработанных газов.

Рабочий цикл двухтактного двигателя[править | править код]

Рабочий цикл двухтактного двигателя

В двухтактном двигателе рабочий цикл полностью происходит в течение одного оборота коленчатого вала. При этом от цикла четырёхтактного двигателя остаётся только сжатие и расширение. Впуск и выпуск заменяются продувкой цилиндра вблизи нижней мёртвой точки поршня, при которой свежая рабочая смесь вытесняет отработанные газы из цилиндра.

Более подробно цикл двигателя устроен следующим образом: когда поршень идёт вверх, происходит сжатие рабочей смеси в цилиндре. Одновременно, движущийся вверх поршень создаёт разрежение в кривошипной камере. Под действием этого разрежения открывается клапан впускного коллектора и свежая порция топливовоздушной смеси (как правило, с добавкой масла) засасывается в кривошипную камеру. При движении поршня вниз давление в кривошипной камере повышается и клапан закрывается. Поджиг, сгорание и расширение рабочей смеси происходят так же, как и в четырёхтактном двигателе. Однако, при движении поршня вниз, примерно за 60° до НМТ открывается выпускное окно (в смысле, поршень перестаёт перекрывать выпускное окно). Выхлопные газы (имеющие ещё большое давление) устремляются через это окно в выпускной коллектор. Через некоторое время поршень открывает также впускное окно, расположенное со стороны впускного коллектора. Свежая смесь, выталкиваемая из кривошипной камеры идущим вниз поршнем, попадает в рабочий объём цилиндра и окончательно вытесняет из него отработавшие газы. При этом часть рабочей смеси может выбрасываться в выпускной коллектор. При движении поршня вверх свежая порция рабочей смеси засасывается в кривошипную камеру.

Можно заметить, что двухтактный двигатель при том же объёме цилиндра, должен иметь почти в два раза большую мощность. Однако, полностью это преимущество не реализуется, из-за недостаточной эффективности продувки по сравнению с нормальным впуском и выпуском. Мощность двухтактного двигателя того же литража, что и четырёхтактный больше в 1,5 — 1,8 раза.

Важное преимущество двухтактных двигателей — отсутствие громоздкой системы клапанов и распределительного вала.

Преимущества двухтактных двигателей[править | править код]

Карбюраторные и инжекторные двигатели[править | править код]

В карбюраторных двигателях процесс приготовления горючей смеси происходит в карбюраторе — специальном устройстве, в котором топливо смешивается с потоком воздуха за счёт аэродинамических сил, вызываемых энергией потока воздуха, засасываемого двигателем.

В инжекторных двигателях впрыск топлива в воздушный поток осуществляют специальные форсунки, к которым топливо подаётся под давлением, а дозирование осуществляется электронным блоком управления — подачей импульса тока, открывающим форсунку или же, в более старых двигателях, специальной механической системой.

Переход от классических карбюраторных двигателей к инжекторам произошёл в основном из-за возрастания требований к чистоте выхлопа (выпускных газов), и установке современных нейтрализаторов выхлопных газов (каталитических конвертеров или просто катализаторов). Именно система впрыска топлива, контролируемая программой блока управления, способна обеспечить постоянство состава выхлопных газов, идущих в катализатор. Постоянство же состава необходимо для нормальной работы катализатора, так как современный катализатор способен работать лишь в узком диапазоне данного состава, и требует строго определённого содержания кислорода. Именно поэтому в тех системах управления, где установлен катализатор, обязательным элементом является лямбда-зонд, он же кислородный датчик. Благодаря лямбда-зонду система управления, постоянно анализируя содержание кислорода в выхлопных газах, поддерживает точное соотношение кислорода, недоокисленных продуктов сгорания топлива, и оксидов азота, которое способен обезвредить катализатор. Дело в том, что современный катализатор вынужден не только окислять не полностью сгоревшие в двигателе остатки углеводородов и угарный газ, но и восстанавливать оксиды азота, а это — процесс, идущий совершенно в другом (с точки зрения химии) направлении. Желательно также ещё раз окислять окончательно весь поток газов. Это возможно лишь в пределах так называемого «каталитического окна», то есть узкого диапазона соотношения топлива и воздуха, когда катализатор способен выполнить свои функции. Соотношение топлива и воздуха в данном случае составляет примерно 1:14,7 по весу (зависит также от соотношения С к Н в бензине), и удерживается в коридоре приблизительно плюс-минус 5 %. Так как одной из труднейших задач является удержание нормативов по оксидам азота, дополнительно необходимо снижать интенсивность их синтеза в камере сгорания. Делается это в основном снижением температуры процесса горения с помощью добавления определённого количества выхлопных газов в камеру сгорания на некоторых критичных режимах (система рециркуляции выхлопных газов).

Основные вспомогательные системы бензинового двигателя[править | править код]

Системы, специфические для бензиновых двигателей[править | править код]

Некоторые особенности современных бензиновых двигателей[править | править код]

Системы, общие для большинства типов двигателей[править | править код]

ru.wikipedia.org

Принцип работы ДВС. Рабочие циклы двигателя (Изучаем вместе) — DRIVE2

На автомобилях устанавливают поршневые двигатели внутреннего сгорания (ДВС), у которых топливо сгорает внутри цилиндра. В основу их действия положено свойство газов расширяться при нагревании. Рассмотрим принцип устройства и работы двигателя внутреннего сгорания (ДВС), а также его рабочие циклы.

🔧 Рабочий цикл четырехтактного бензинового двигателя

Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу. Если рабочий цикл совершается за два хода поршня, т.е. за один оборот коленчатого вала, то такой двигатель называется двухтактным.

Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения (рабочего хода) и выпуска.

• Принцип работы ДВС (для просмотра нажмите на кнопку иллюстрации — Фото 2-5

Крайние положения поршня, при которых он наиболее удален от оси коленчатого вала или приближен к ней, называются верхней и нижней «мертвыми» точками (ВМТ и НМТ). Подробнее в статье "как устроены бензиновые и дизельные двигатели".

Впуск. По мере того, как коленчатый вал двигателя делает первый полуоборот, поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разряжение, вследствие чего свежий заряд горючей смеси, состоящий из паров бензина и воздуха, засасывается через впускной газопровод в цилиндр и, смешиваясь с остаточными отработавшими газами, образует рабочую смесь.

Сжатие. После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала (второй полуоборот) поршень перемещается от НМТ к ВМТ при закрытых клапанах. По мере уменьшения объема температура и давление рабочей смеси повышаются.

Расширение или рабочий ход. В конце такта сжатия рабочая смесь воспламеняется от электрической искры и быстро сгорает, вследствие чего температура и давление образующихся газов резко возрастает, поршень при этом перемещается от ВМТ к НМТ. В процессе такта расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип приводит во вращение коленчатый вал.

При расширении газы совершают полезную работу, поэтому ход поршня при третьем полуобороте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня, при нахождении его около НМТ открывается выпускной клапан, давление в цилиндре снижается до 0.3 — 0.75 МПа, а температура до 950 — 1200оС.

Выпуск. При четвертом полуобороте коленчатого вала поршень перемещается от НМТ к ВМТ. При этом выпускной клапан открыт, и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной газопровод.

🔧 Рабочий цикл четырехтактного дизеля

В отличие от бензинового двигателя, при такте "впуск" в цилиндры дизеля поступает чистый воздух. Во время такта "сжатие" воздух нагревается до 600оС. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.

Впуск. При движении поршня от ВМТ к НМТ вследствие образующегося разряжения из воздушного фильтра в цилиндр через открытый впускной клапан поступает атмосферный воздух. Давление воздуха в цилиндре составляет 0.08 — 0.095 МПа, а температура 40 — 60°С.

Сжатие. Поршень движется от НМТ к ВМТ; впускной и выпускной клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает поступивший воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива. При ходе поршня к ВМТ цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом.

Расширение или рабочий ход. Впрыснутое в конце такта сжатия топливо, перемешиваясь с нагретым воздухом, воспламеняется, и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. При этом максимальное давление газов достигает 6 — 9 МПа, а температура 1800 — 2000°С. Под действием давления газов поршень перемещается от ВМТ в НМТ — происходит рабочий ход. Около НМТ давление снижается до 0.3 — 0.5 МПа, а температура до 700 — 900оС.

Выпуск. Поршень перемещается от НМТ в ВМТ и через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра. Давление газов снижается до 0.11 — 0.12 МПа, а температура до 500-700оС. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.

🔧 Принцип работы многоцилиндровых двигателей

На автомобилях устанавливают многоцилиндровые двигатели. Чтобы многоцилиндровый двигатель работал равномерно, такты расширения должны следовать через равные углы поворота коленчатого вала (т. е. через равные промежутки времени).

Последовательность чередования одноименных тактов в цилиндрах называют порядком работы двигателя. Порядок работы большинства четырехцилиндровых двигателей 1-3-4-2 или 1-2-4-3. Это означает, что после рабочего хода в первом цилиндре следующий рабочий ход происходит в третьем, затем в четвертом и, наконец, во втором цилиндре. Определенная последовательность соблюдается и в других многоцилиндровых двигателях.

• Диаграмма работы двигателя по схеме 1-2-4-3 Фото 6

Многоцилиндровые двигатели бывают рядными и V-образными. В рядных двигателях цилиндры расположены вертикально, а в V-образных — под углом. Последние характеризуются меньшей габаритной длиной по сравнению с первыми. Современные восьмицилиндровые двигатели выполняют двухрядными с V-образным расположением цилиндров.

www.drive2.ru

Двигатель внутреннего сгорания - история создания / Техника / stD

Это вступительная часть цикла статей посвящённых Двигателю Внутреннего Сгорания, являющаяся кратким экскурсом в историю, повествующая об эволюции ДВС. Так же, в статье будут затронуты первые автомобили.

В следующих частях будут подробно описаны различные ДВС:

• Шатунно-поршневые
• Роторные
• Турбореактивные
• Реактивные

Паровая машина, послужившая прародителем ДВС, по своей сути являлась двигателем внешнего сгорания, так как горение топлива происходило в отдельно стоявшем котле, а рабочее тело (пар) подавалось в цилиндр по трубам.
Такая конструкция приводила к большим потерям тепла (энергии) и черезмерному расходу топлива.

Для преодоления этих недостатков необходимо было сделать так, чтоб топливо сгорало непосредственно в самом цилиндре. Реализацией этой идеи и стал Двигатель Внутреннего Сгорания.

ДВС различного действияДвухтактный ДВС — на первом такте происходит впуск и сжатие горючей смеси, а на втором такте расширение и выпуск отработанных газов.

Четырёхтактный ДВС — на первом такте происходит впуск, на втором сжатие, на третьем расширение, на четвёртом выпуск.

Звёздообразный, или радиальный ДВС — имеет небольшую длину и позволяет компактно размещать большое количество цилиндров.

Ротативный ДВС — двигатель вращается вокруг неподвижного коленчатого вала.

Роторный ДВС — за один оборот двигатель выполняет один рабочий цикл.


Слово «Детонация» здесь неуместно, правильно будет — расширение. Детонация же, это разрушительное следствие неправильной работы двигателя.

Турбореактивный ДВС — в основном используются на самолётах.

Реактивный ДВС — используется в ракетах.



К первым попыткам создать ДВС (если не брать в расчёт артиллерийские орудия) можно отнести проект порохового двигателя в виде цилиндра с поршнем, предложенный Христианом Гюйгенсом и Дени Папеном, в 17 веке.

Идея заключалась в том, что насыпанный внутрь цилиндра и подожжённый порох, выталкивал поршень вверх.
Конечно, назвать эту конструкцию двигателем можно лишь с большой натяжкой, однако нужно помнить что на дворе был 1690 год.

           

Чуть позже, Папен, вместо пороха залил в цилиндр воду, которая доводилась до кипения костром, разожженным под цилиндром, а образующийся пар толкал поршень.
Тогда эта идея, отчасти, поспособствовала созданию паровой машины, а сейчас поршень и цилиндр используется в современных шатунно-поршневых ДВС.

Существовали и другие изобретатели 17-18 веков пытавшиеся создавать ДВС, но им не удалось добиться сколько-нибудь значимых результатов, да и информации о них крайне мало.


    В 1801 году, Филипп Лебон — французский инженер и изобретатель газового освещения, зарегистрировал патент на двигатель внутреннего сгорания работающий на смеси газа и воздуха.

В двигателе Лебона были предусмотрены два компрессора и камера смешивания. Один компрессор должен был накачивать в камеру сжатый воздух, а другой — сжатый «светильный газ» из газогенератора. Газовоздушная смесь поступала в рабочий цилиндр, где и воспламенялась.

В связи со смертью Лебона, в 1804 году, двигатель так и остался проектом на бумаге.

К сожалению, не нашёл никаких картинок.


В 1806 году, французский изобретатель Джозеф Ньепс вместе со своим братом Клодом, сконструировали прототип двигателя внутреннего сгорания и назвали его «Pyreolophore».

Двигатель был установлен на лодку, которая смогла подняться вверх по течению реки Сона. Спустя год, после испытаний, братья получили патент на своё изобретение, подписаный Наполеоном Бонопартом, сроком на 10 лет.

Правильнее всего, было бы назвать этот двигатель реактивным, так как его работа заключалась в выталкивании воды из трубы находящейся под днищем лодки…

Двигатель состоял из камеры поджигания и камеры сгорания, сильфона для нагнетания воздуха, топливо-раздаточного устройства и устройства зажигания. Топливом для двигателя служила угольная пыль.

Сильфон впрыскивал струю воздуха смешанную с угольной пылью в камеру поджигания где тлеющий фитиль зажигал смесь. После этого, частично подожжённая смесь (угольная пыль горит относительно медленно) попадала в камеру сгорания где полностью прогорала и происходило расширение.
Далее давление газов выталкивало воду из выхлопной трубы, что заставляло лодку двигаться, после этого цикл повторялся.
Двигатель работал в импульсном режиме с частотой ~12 и/минуту.

Спустя некоторое время, братья усовершенствовали топливо добавив в него смолу, а позже заменили его нефтью и сконструировали простую систему впрыска.
В течении следующих десяти лет проект не получил никакого развития. Клод уехал в Англию с целью продвижения идеи двигателя, но растратил все деньги и ничего не добился, а Джозеф занялся фотографией и стал автором первой в мире фотографии «Вид из окна».

Принято считать, что братья Ньепс были авторами первой в мире системы впрыска.

Во Франции, в доме-музее Ньепсов, выставлена реплика «Pyreolophore».

Справа стоит самокат (дрезина — лат. быстроя нога), который Джозеф Ньепс построил в 1817 году.


В том же 1807 году, швейцарский изобретатель Франсуа Исаак де Рива сконструировал двигатель внутреннего сгорания с электрическим зажиганием. Топливом для двигателя служил водород, а идею электрического поджига, де Рива позаимствовал у Алессандро Вольта.

Чуть позже, де Рива водрузил свой двигатель на четырёхколёсную повозку, которая, по мнению историков, стала первым автомобилем с ДВС.

Про Алессандро ВольтаВольта впервые поместил пластины из цинка и меди в кислоту, чтобы получить непрерывный электрический ток, создав первый в мире химический источник тока («Вольтов столб»).

В 1776 г. Вольта изобрел газовый пистолет — «пистолет Вольты», в котором газ взрывался от электрической искры.

В 1800 году построил химическую батарею, что позволило получать электричество с помощью химических реакций.

Именем Вольты названа единица измерения электрического напряжения — Вольт.


A — цилиндр, B — «свеча» зажигания, C — поршень, D — «воздушный» шар с водородом, E — храповик, F — клапан сброса отработанных газов, G — рукоятка для управления клапаном.

Водород хранился в «воздушном» шаре соединённым трубой с цилиндром. Подача топлива и воздуха, а так же поджиг смеси и выброс отработанных газов осуществлялись вручную, с помощью рычагов.

Принцип работы:

• Через клапан сброса отработанных газов в камеру сгорания поступал воздух.
• Клапан закрывался.
• Открывался кран подачи водорода из шара.
• Кран закрывался.
• Нажатием на кнопку подавался электрический разряд на «свечу».
• Смесь вспыхивала и поднимала поршень вверх.
• Открывался клапан сброса отработанных газов.
• Поршень падал под собственным весом (он был тяжёлый) и тянул верёвку, которая через блок поворачивала колёса.

После этого цикл повторялся.

В 1813 году де Рива построил ещё один автомобиль. Это была повозка длиной около шести метров, с колесами двухметрового диаметра и весившея почти тонну.
Машина смогла проехать 26 метров с грузом камней (около 700 фунтов) и четырьмя мужчинами, со скоростью 3 км/ч.
С каждым циклом, машина перемещалась на 4-6 метров.

Мало кто из его современников серьезно относился к этому изобретению, а Французская Академия Наук утверждала, что двигатель внутреннего сгорания никогда не будет конкурировать по производительности с паровой машиной.

В Парижском «Музее искусств и ремёсел» экспонируется модель автомобиля Франсуа де Рива.


В 1825 году, английский инженер и изобретатель Сэмюэль Браун, создал двигатель работающий на газе (водород).

Принцип работы двигателя основывался на сжигании воздуха в цилиндре, что приводило к созданию вакуума и втягивании поршня, а для более эффективного охлаждения, цилиндр окружала водяная рубашка.

Двигатель использовался для перекачки воды и для приведения в движение речных судов. Браун создал компанию по производству двигателей для лодок и барж, некоторые из которых достигали скорости 14 км/ч. Тем не менее, предприятие оказалось неудачным из-за перебоев с поставками топлива и высокой стоимости.


В 1826 году, Сэмюэль Мори, пионер американского «паростроения», запатентовал двигатель внутреннего сгорания работающий на скипидаре и спирте.

Двигатель имел много общего с современными, он состоял из двух цилиндров с водяной рубашкой, карбюратора и выпускных клапанов.

Информации очень мало, поэтому пишу что есть:

Мори продемонстрировал свой ​​двигатель в Нью-Йорке и Филадельфии, о чём есть свидетельства очевидцев. Двигатели были установлены на лодку и на телегу. Во время демонстрации «автомобиля», Мори не справился с управлением и съехал в канаву. Это была первая в США поездка на автомобиле. Несмотря на успех, Мори не смог найти покупателя.

Популяризатором идеи Мори был Чарльз Дьюри, изобретатель, сконструировавший первый бензиновый двигатель в Америке. Он профинансировал создание двух рабочих реплик двигателя Мори, одна из которых находится в распоряжении Смитсоновского института, а другая принадлежит Дин Камен.


В 1833 году, американский изобретатель Лемюэль Веллман Райт, зарегистрировал патент на двухтактный газовый двигатель внутреннего сгорания с водяным охлаждением.

Дугалд Клерк (см. ниже) в своей книге «Gas and Oil Engines» написал о двигателе Райта следующее:

«Чертеж двигателя весьма функционален, а детали тщательно проработаны. Взрыв смеси действует непосредственно на поршень, который через шатун вращает кривошипный вал. По внешнему виду двигатель напоминает паровую машину высокого давления, в которой газ и воздух подаются с помощью насосов из отдельных резервуаров. Смесь, находящаяся в сферических ёмкостях поджигалась во время подъёма поршня в ВМТ (верхняя мёртвая точка) и толкала его вниз/вверх. В конце такта открывался клапан и выбрасывал выхлопные газы в атмосферу.»

Неизвестно, был ли когда-либо этот двигатель построен, однако есть его чертёж:


В 1838 году, английский инженер Уильям Барнетт получил патент на три двигателя внутреннего сгорания.

Первый двигатель — двухтактный одностороннего действия (топливо горело только с одной стороны поршня) с отдельными насосами для газа и воздуха. Поджиг смеси происходил в отдельном цилиндре, а потом горящая смесь перетекала в рабочий цилиндр. Впуск и выпуск осуществлялся через механические клапана.

Второй двигатель повторял первый, но был двойного действия, то есть горение происходило попеременно с обоих сторон поршня.

Третий двигатель, так же был двойного действия, но имел впускные и выпускные окна в стенках цилиндра открывающееся в момент достижения поршнем крайней точки (как в современных двухтактниках). Это позволяло автоматически выпускать выхлопные газы и впускать новый заряд смеси.

Отличительной особенностью двигателя Барнетта было то, что свежая смесь сжималась поршнем перед воспламенением.

Чертёж одного из двигателей Барнетта:


В 1853-57 годах, итальянские изобретатели Еугенио Барзанти и Феличе Маттеуччи разработали и запатентовали двухцилиндровый двигатель внутреннего сгорания мощность 5 л/с.
Патент был выдан Лондонским бюро так как итальянское законодательство не могло гарантировать достаточную защиту.

Строительство прототипа было поручено компании «Bauer & Co. of Milan» (Helvetica), и завершено в начале 1863 года. Успех двигателя, который был гораздо более эффективным чем паровая машина, оказался настолько велик, что компания стала получать заказы со всего света.

Ранний, одноцилиндровый двигатель Барзанти-Маттеуччи:

Модель двухцилиндрового двигателя Барзанти-Маттеуччи:

Маттеуччи и Барзанти заключили соглашение на производство двигателя с одной из бельгийских компаний. Барзанти отбыл в Бельгию для наблюдения за работой лично и внезапно умер от тифа. Со смертью Барзанти все работы по двигателю были прекращены, а Маттеуччи вернулся к своей прежней работе в качестве инженера-гидравлика.

В 1877 году, Маттеуччи утверждал, что он с Барзанти были главными создателями двигателя внутреннего сгорания, а двигатель построенный Августом Отто очень походил на двигатель Барзанти-Маттеуччи.

Документы касающиеся патентов Барзанти и Маттеуччи хранятся в архиве библиотеки Museo Galileo во Флоренции.

Национальный музей науки и техники Леонардо да Винчи в Милане.


В 1860 году, бельгийский инженер Жан Жозеф Этьен Ленуар построил двигатель внутреннего сгорания с водяным охлаждением, представлявший собой переделанную одноцилиндровую горизонтальную паровую машину двойного действия, работавший на смеси воздуха и светильного газа с электрическим искровым зажиганием. Мощность двигателя составляла 12 л/с.

Двигатели Ленуара использовались как стационарные, судовые, на локомотивах и на дорожных экипажах.

Современная модель:

Принцип работы прост: смесь, с помощью одного золотникового устройства, попеременно подавалась в полости цилиндра и поджигалась от «свечи», а через другой золотник выбрасывались отработанные газы.

Золотник

В зависимости от положения золотника, окна (4) и (5) сообщаются с замкнутым пространством (6) окружающим золотник и заполненным паром, или с полостью 7, соединённой с атмосферой или конденсатором.

Это был первый коммерчески успешный двигатель внутреннего сгорания. К 1865 году более 400 единиц использовались во Франции и около 1000 в Великобритании.


Двигатель Ленуара. «Музей искусств и ремёсел». Париж.

В 1862 году Ленуар построил первый автомобиль с двигателем внутреннего сгорания, адаптировав свой ​​двигатель для работы на жидком топливе.

Даже капот есть

После появления четырёхтактного двигателя конструкции Николауса Отто, двигатель Ленуара быстро потерял свои позиции на рынке.


В 1861 году, французский инженер Альфонс Эжен Бо де Роша получил патент на четырёхтактный двигатель внутреннего сгорания. Проект был реализован только на бумаге.

Картинок я не нашёл.


В 1863 году, Николаус Август Отто и Карл Ойген Ланген сконструировали атмосферный двигатель внутреннего сгорания и основали завод по его производству «N. A. Otto & Cie».

В 1867 году на «Парижской Всемирной Выставке» их двигатель был удостоен золотой медали.

После банкротства в 1872 году, Ланген и Отто основали новую компанию, которая сегодня известна как «Deutz AG». На должность топ-менеджера был принят Готлиб Даймлер, который в свою очередь, взял на должность главного конструктора своего друга Вильгельма Майбаха.

Самым главным изобретением Николауса Отто был двигатель с четырёхтактным циклом — циклом Отто. Этот цикл по сей день лежит в основе работы большинства газовых и бензиновых двигателей.

Четырёхтактный цикл был самым большим техническим достижением Отто, но вскоре обнаружилось, что за несколько лет до его изобретения точно такой же принцип работы двигателя был описан французским инженером Бо де Роша (см. выше). Группа французских промышленников оспорила патент Отто в суде, суд счёл их доводы убедительными. Права Отто, вытекавшие из его патента, были значительно сокращены, в том числе было аннулировано его монопольное право на четырёхтактный цикл.

Не смотря на то, что конкуренты наладили выпуск четырёхтактных двигателей, отработанная многолетним опытом модель Отто всё равно была лучшей, и спрос на неё не прекращался. К 1897 году было выпущено около 42 тысяч таких двигателей разной мощности. Однако то обстоятельство, что в качестве топлива использовался светильный газ, сильно суживало область их применения.
Количество светильногазовых заводов было незначительно даже в Европе, а в России их вообще было только два — в Москве и Петербурге.


В 1865 году, французкий изобретатель Пьер Хьюго получил патент на машину представлявшую собой вертикальный одноцилиндровый двигатель двойного действия, в котором для подачи смеси использовались два резиновых насоса, приводимых в действие от коленчатого вала.

Позже Хьюго сконструировал горизонтальный двигатель схожий с двигателем Ленуара.


Science Museum, London.


В 1870 году, австро-венгерский изобретатель Сэмюэль Маркус Зигфрид сконструировал двигатель внутреннего сгорания работающий на жидком топливе и установил его на четырёхколёсную тележку.

Сегодня этот автомобиль хорошо известен как «The first Marcus Car».

В 1887 году, в сотрудничестве с компанией «Bromovsky & Schulz», Маркус построил второй автомобиль — «Second Marcus Car».

Technisches Museum Wien


В 1872 году, американский изобретатель Джордж Брайтон запатентовал двухцилиндровый двигатель внутреннего сгорания постоянного давления, работающий на керосине.
Брайтон назвал свой двигатель «Ready Motor».

Первый цилиндр выполнял функцию компрессора, нагнетавшего воздух в камеру сгорания, в которую непрерывно поступал и керосин. В камере сгорания смесь поджигалась и через золотниковый механизм поступало во второй — рабочий цилиндр. Существенным отличием от других двигателей, было то, что топливовоздушная смесь сгорала постепенно и при постоянном давлении.

Интересующиеся термодинамическими аспектами двигателя, могут почитать про «Цикл Брайтона».


В 1878 году, шотландский инженер Сэр (в 1917 году посвящён в рыцари)Дугалд Клерк разработал первый двухтактный двигатель с воспламенением сжатой смеси. Он запатентовал его в Англии в 1881 году.

Двигатель работал любопытным образом: в правый цилиндр подавался воздух и топливо, там оно смешивалось и эта смесь выталкивалась в левый цилиндр, где и происходило поджигание смеси от свечи. Происходило расширение, оба поршня опускались, из левого цилиндра (через левый патрубок) выбрасывались выхлопные газы, а в правый цилиндр всасывалась новая порция воздуха и топлива. Следуя по инерции поршни поднимались и цикл повторялся.


В 1879 году, Карл Бенц, построил вполне надежный бензиновый двухтактный двигатель и получил на него патент.

Однако настоящий гений Бенца проявился в том, что в последующих проектах он сумел совместить различные устройства (дроссель, зажигание с помощью искры с батареи, свеча зажигания, карбюратор, сцепление, КПП и радиатор) на своих изделиях, что в свою очередь стало стандартом для всего машиностроения.

В 1883 году, Бенц основал компанию «Benz & Cie» по производству газовых двигателей и в 1886 году запатентовал четырехтактный двигатель, который он использован на своих автомобилях.

Благодаря успеху компании «Benz & Cie», Бенц смог заняться проектированием безлошадных экипажей. Совместив опыт изготовления двигателей и давнишнее хобби — конструирование велосипедов, к 1886-му году он построил свой первый автомобиль и назвал его "Benz Patent Motorwagen".


Конструкция сильно напоминает трехколёсный велосипед.

Одноцилиндровый четырёхтактный двигатель внутреннего сгорания рабочим объёмом 954 см3., установленный на "Benz Patent Motorwagen".

Двигатель был оснащён большим маховиком (использовался не только для равномерного вращения, но и для запуска), бензобаком на 4,5 л., карбюратором испарительного типа и золотниковым клапаном, через который топливо поступало в камеру сгорания. Воспламенение производилось свечой зажигания собственной конструкции Бенца, напряжение на которую подавалось от катушки Румкорфа.

Охлаждение было водяным, но не замкнутого цикла, а испарительным. Пар уходил в атмосферу, так что заправлять автомобиль приходилось не только бензином, но и водой.

Двигатель развивал мощность 0,9 л.с. при 400 об/мин и разгонял автомобиль до 16 км/ч.

Карл Бенц за «рулём» своего авто.

Чуть позже, в 1896 году, Карл Бенц изобрел оппозитный двигатель (или плоский двигатель), в котором поршни достигают верхней мертвой точки в одно и то же время, тем самым уравновешивая друг друга.


Музей «Mercedes-Benz» в Штутгарте.


В 1882 году, английский инженер Джеймс Аткинсон придумал цикл Аткинсона и двигатель Аткинсона.

Двигатель Аткинсона — это по существу двигатель, работающий по четырёхтактному циклу Отто, но с измененным кривошипно-шатунным механизмом. Отличие заключалось в том, что в двигателе Аткинсона все четыре такта происходили за один оборот коленчатого вала.

Использование цикла Аткинсона в двигателе позволяло уменьшить потребление топлива и снизить уровень шума при работе за счёт меньшего давления при выпуске. Кроме того, в этом двигателе не требовалось редуктора для привода газораспределительного механизма, так как открытие клапанов приводил в движение коленчатый вал.

Не смотря на ряд преимуществ (включая обход патентов Отто) двигатель не получил широкого распространения из-за сложности изготовления и некоторых других недостатков.
Цикл Аткинсона позволяет получить лучшие экологические показатели и экономичность, но требует высоких оборотов. На малых оборотах выдаёт сравнительно малый момент и может заглохнуть.

Сейчас двигатель Аткинсона применяется на гибридных автомобилях «Toyota Prius» и «Lexus HS 250h».


В 1884 году, британский инженер Эдвард Батлер, на лондонской выставке велосипедов "Stanley Cycle Show" продемонстрировал чертежи трёхколёсного автомобиля с бензиновым двигателем внутреннего сгорания, а в 1885 году построил его и показал на той же выставке, назвав «Velocycle». Так же, Батлер был первым кто использовал слово бензин.

Патент на «Velocycle» был выдан в 1887 году.

На «Velocycle» был установлен одноцилиндровый, четырёхтактный бензиновый ДВС оснащенный катушкой зажигания, карбюратором, дросселем и жидкостным охлаждением. Двигатель развивал мощность около 5 л.с. при объёме 600 см3, и разгонял автомобиль до 16 км/ч.

На протяжении многих лет Батлер улучшал характеристики своего транспортного средства, но был лишен возможности его тестировать из-за "Закона Красного Флага" (издан в 1865 году), согласно которому транспортные средства не должны были превышать скорость свыше 3 км/ч. Кроме того, в автомобиле должны были присутствовать три человека, один из которых должен был идти перед автомобилем с красным флагом (такие вот меры безопасности).

В журнале «Английский Механик» от 1890 года, Батлер написал — «Власти запрещают использование автомобиля на дорогах, в следствии чего я отказываюсь от дальнейшего развития.»

Из-за отсутствия общественного интереса к автомобилю, Батлер разобрал его на металлолом, и продал патентные права Гарри Дж. Лоусону (производителю велосипедов), который продолжил производство двигателя для использования на катерах.

Сам же Батлер перешёл к созданию стационарных и судовых двигателей.

В 1900 году, в журнале "Autocar", Батлер опубликовал статью следующего содержания:

«Теперь, когда внимание общественности приковано к немецким изобретателям — Бенцу и Даймлеру, я надеюсь, что вы найдёте место в вашем журнале для иллюстрации небольшого бензинового автомобиля, который я считаю, был сделан абсолютно первым в этой стране.
Я не могу утверждать, что сделал очень много, однако я проводил свои эксперименты в то время, когда прогресс тормозился из-за предрассудков людей и отсутствия интереса. Тем не менее, часть моих идей до сих пор используется во многих типах двигателей.»


В 1889 году, на Всемирной выставке в Париже, французский инженер Феликс Милле представил и запатентовал 5-цилиндровый ротационный (не роторный) двигатель, встроенный в колесо велосипеда.


Мотоцикл Феликса Милле, 1897 год.

Ротационный двигатель основан на стандартном цикле Отто, но вместо вращения коленчатого вала вращается весь двигатель выступая в роли маховика, а коленчатый вал стоит на месте.

Подобные двигатели широко использовались в авиации во времена Первой мировой войны.

Достоинства и недостатки этих двигателей будут описаны в отдельной статье, однако интересующиеся могут почитать википедию.


В 1891 году, Герберт Эйкройд Стюарт в сотрудничестве с компанией "Richard Hornsby and Sons" построил двигатель «Hornsby-Akroyd», в котором топливо (керосин) под давлением впрыскивалось в дополнительную камеру (из-за формы её называли «горячий шарик»), установленную на головке блока цилиндров и соединённую с камерой сгорания узким проходом. Топливо воспламенялось от горячих стенок дополнительной камеры и устремлялось в камеру сгорания.


1. Дополнительная камера (горячий шарик).
2. Цилиндр.
3. Поршень.
4. Картер.

Для запуска двигателя использовалась паяльная лампа, которой нагревали дополнительную камеру (после запуска она подогревалась выхлопными газами). Из-за этого двигатель «Hornsby-Akroyd», который был предшественником дизельного двигателя сконструированного Рудольфом Дизелем, часто называли «полу-дизелем». Однако спустя год Эйкройд усовершенствовал свой двигатель добавив к нему «водяную рубашку» (патент от 1892 г.), что позволило повысить температуру в камере сгорания за счёт увеличения степени сжатия, и теперь уже не было необходимости в дополнительном источнике нагрева.


В 1893 году, Рудольф Дизель получил патенты на тепловой двигатель и модифицированный "цикл Карно" под названием «Метод и аппарат для преобразования высокой температуры в работу».

В 1897 году, на «Аугсбургском машиностроительном заводе» (с 1904 года MAN), при финансовом участии компаний Фридриха Круппа и братьев Зульцер, был создан первый функционирующий дизель Рудольфа Дизеля
Мощность двигателя составляла 20 лошадиных сил при 172 оборотах в минуту, КПД 26,2 % при весе пять тонн.
Это намного превосходило существующие двигатели Отто с КПД 20 % и судовые паровые турбины с КПД 12 %, что вызвало живейший интерес промышленности в разных странах.

Двигатель Дизеля был четырёхтактным. Изобретатель установил, что КПД двигателя внутреннего сгорания повышается от увеличения степени сжатия горючей смеси. Но сильно сжимать горючую смесь нельзя, потому что тогда повышаются давление и температура и она самовоспламеняется раньше времени. Поэтому Дизель решил сжимать не горючую смесь, а чистый воздух и концу сжатия впрыскивать топливо в цилиндр под сильным давлением.
Так как температура сжатого воздуха достигала 600—650 °C, топливо самовоспламенялось, и газы, расширяясь, двигали поршень. Таким образом Дизелю удалось значительно повысить КПД двигателя, избавиться от системы зажигания, а вместо карбюратора использовать топливный насос высокого давления (ТНВД).

Позднее, в 1900 году, на "Всемирной выставке", Рудольф Дизель продемонстрировал двигатель работающий на арахисовом масле (биодизель).


В 1903 году, норвежский изобретатель Эгидий Эллинг построил первую газовую турбину, развивавшую мощность в 11 лошадиных сил. Патент на это изобретение он получил ещё в 1884 году.

К 1904-му году мощность турбины была увеличена до 44 лошадиных сил, а к 1932-му году турбина уже развивала мощность около 75 лошадиных сил.

В 1933 году Эллинг пророчески писал: «Когда я начал работать над газовой турбиной в 1882 году, я был твёрдо уверен в том, что моё изобретение будет востребовано в авиастроении.»

К сожалению, Эллинг умер в 1949 году, так и не дожив до наступления эры турбореактивной авиации.


Единственное фото, которое удалось найти.

Возможно кто-то найдёт что-либо об этом человеке в "Норвежском музее техники".


В 1903 году, Константин Эдуардович Циолковский, в журнале «Научное обозрение» опубликовал статью «Исследование мировых пространств реактивными приборами», где впервые доказал, что аппаратом, способным совершить космический полёт, является ракета. В статье был предложен и первый проект ракеты дальнего действия. Корпус её представлял собой продолговатую металлическую камеру, снабжённую жидкостным реактивным двигателем (который тоже является двигателем внутреннего сгорания). В качестве горючего и окислителя он предлагал использовать соответственно жидкие водород и кислород.


Наверное на этой ракетно-космической ноте и стоит закончить историческую часть, так как наступил 20-ый век и Двигатели Внутреннего Сгорания стали производиться повсеместно.

Философское послесловие…

К.Э. Циолковский полагал, что в обозримом будущем люди научатся жить если не вечно, то по крайней мере очень долго. В связи с этим на Земле будет мало места (ресурсов) и потребуются корабли для переселения на другие планеты. К сожалению, что-то в этом мире пошло не так, и с помощью первых ракет люди решили просто уничтожать себе подобных...

Спасибо всем кто прочитал.

Все права защищены © 2016 istarik.ru
Любое использование материалов допускается только с указанием активной ссылки на источник.

istarik.ru

Двигатель внутреннего сгорания

ВВЕДЕНИЕ

В древности люди приводили в действие простейшие механизмы руками или с помощью животных. Затем они научились использовать силу ветра, плавая на парусных кораблях. Они научились так же использовать ветер для вращения ветряных мельниц, перемалывающих зерно в муку. Позже они стали применять энергию течения воды в реках для вращения водяных колес. Эти колеса перекачивали и поднимали воду или приводили в действие различные механизмы.
История появления тепловых двигателей уходит в далекое прошлое. Хотя и двигатель внутреннего сгорания – очень сложный механизм. И функция, выполняемая тепловым расширением в двигателях внутреннего сгорания не так проста, как это кажется на первый взгляд. Да и не существовало бы двигателей внутреннего сгорания без использования теплового расширения газов.

Цель работы:
Рассмотреть двигатель внутреннего сгорания.

Задачи:
1. Изучить теорию двигателей внешнего и внутреннего сгорания.
2. Сконструировать модель на основе теории ДВС.
3. Рассмотреть влияние ДВС на окружающую среду.
4. Создать буклет на тему: “Двигатель внутреннего сгорания ”.

Гипотеза:
В качестве энергетических установок автомобилей наибольшее распространение получили двигатели внутреннего сгорания, в которых процесс сгорания топлива с выделением теплоты и превращением ее в механическую работу происходит непосредственно в цилиндрах. На большинстве современных автомобилей установлены двигатели внутреннего сгорания.

Актуальность:
Физика и физические законы являются неотъемлемой частью нашей жизни.
Техника, здания, различные процессы, протекающие в нашем мире – все это физика. Мы не можем жить и не знать, хотя бы элементарных законов этой науки. А, следовательно, физика – это актуальная, не стареющая наука.
Тема нашей работы поможет ученикам понять и усвоить на первый взгляд самые обычные процессы в окружающем нас мире, но сложные по своему устройству.


РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Двигатель внутреннего сгорания

Значительный рост всех отраслей народного хозяйства требует перемещения большого количества грузов и пассажиров. Высокая маневренность, проходимость и приспособленность для работы в различных условиях делает автомобиль одним из основных средств перевозки грузов и пассажиров. На долю автомобильного транспорта приходится свыше 80% грузов, перевозимых всеми видами транспорта вместе взятыми, и более 70% пассажирских перевозок. За последние годы заводами автомобильной промышленности освоены многие образцы модернизированной и новой автомобильной техники, в том числе для сельского хозяйства, строительства, торговли, нефтегазовой и лесной промышленности. В настоящее время существует большое количество устройств, использующих тепловое расширение газов. К таким устройствам относится карбюраторный двигатель, дизели, турбореактивные двигатели и т. д.

Тепловые двигатели могут быть разделены на две основные группы:
1. Двигатели с внешним сгоранием.
2. Двигатели внутреннего сгорания.

Изучая тему урока “Двигатели внутреннего сгорания” в 8 классе мы заинтересовались этой темой. Мы живем в современном мире, в котором техника играет важную роль. Не только та техника, которую мы используем у себя дома, но и на которой ездим – автомобиль. Рассматривая машину, я убедился, что двигатели это необходимая часть автомобиля. Неважно будь это старая или новая машина. Поэтому мы решили затронуть тему двигателя внутреннего сгорания, который использовали и раньше и сейчас.

Для того, чтобы понять устройство ДВС, мы решили создать его сами и вот, что у нас получилось.

Изготовление ДВС

Материал: картон, клей, проволока, моторчик, шестерни, батарейка 9V.

Ход изготовления
1. Изготовили из картона коленвал (вырезали круг)
2. Изготовили шатун (сложили прямоугольный лист картона 15*8 пополам и ещё на 90градусов), на концах которого сделали отверстия
3. Из картона изготовили поршень, в котором сделали отверстия (под поршневые пальцы)
4. Поршневые пальцы сделали по размеру отверстия в поршне, свернув небольшой лист картона
5. С помощью поршневого пальца закрепили поршень на шатуне, а с помощью проволоки шатун прикрепили к коленвалу
6. По размеру поршня свернули цилиндр, а по размеру коленвала картер (Картер – коробочка под коленвал)
7. Собрали механизм вращения коленвала (с помощью шестерёнок и моторчика), так чтобы при больших оборотах моторчика вращающий механизм развивал меньшие обороты (чтобы он мог провернуть коленвал с шатуном и поршнем)
8. К коленвалу прикрепили вращающийся механизм и поместили его в картер (закрепив вр. механизм к стенке картера)
9. Поршень поместили в цилиндр и склеили цилиндр с картером.
10. Идущие два провода + и – от моторчика присоединяем к батарейке и наблюдаем движение поршня.

Вид модели снаружи

Вид модели внутри

Применение ДВС

Тепловое расширение нашло свое применение в различных современных технологиях. В частности можно сказать о применении теплового расширения газа в теплотехники. Так, например, это явление применяется в различных тепловых двигателях, т. е. в двигателях внутреннего и внешнего сгорания:
* Роторных двигателях;
* Реактивных двигателях;
* Турбореактивных двигателях;
* Газотурбинные установки;
* Двигателях Ванкеля;
* Двигателях Стирлинга;
* Ядерные силовые установки.

Тепловое расширение воды используется в паровых турбинах и т. д. Все это в свою очередь нашло широкое распространение в различных отраслях народного хозяйства. Например, двигатели внутреннего сгорания наиболее широко используются:
* Транспортные установки;
* Сельскохозяйственные машины.

В стационарной энергетике двигатели внутреннего сгорания широко используются:
* На небольших электростанциях;
* Энергопоезда;
* Аварийные энергоустановки.

ДВС получили большое распространение также в качестве привода компрессоров и насосов для подачи газа, нефти, жидкого топлива и т. п. по трубопроводам, при производстве разведочных работ, для привода бурильных установок при бурении скважин на газовых и нефтяных промыслах.
Турбореактивные двигатели широко распространены в авиации. Паровые турбины – основной двигатель для привода электрогенераторов на ТЭС. Применяют паровые турбины также для привода центробежных воздуходувок, компрессоров и насосов.
Существуют даже паровые автомобили, но они не получили распространения из–за конструктивной сложности.
Тепловое расширение применяется также в различных тепловых реле, принцип действия, которых основан на линейном расширении трубки и стержня, изготовленных из материалов с различным температурным коэффициентом линейного расширения.

Воздействие тепловых двигателей на окружающую среду

Отрицательное влияние тепловых машин на окружающую среду связано с действием различных факторов.
Во–первых, при сжигании топлива используется кислород из атмосферы, вследствие чего содержание кислорода в воздухе постепенно уменьшается.
Во–вторых, сжигание топлива сопровождается выделением в атмосферу углекислого газа.
В–третьих, при сжигании угля и нефти атмосфера загрязняется азотными и серными соединениями, вредными для здоровья человека. А автомобильные двигатели ежегодно выбрасывают в атмосферу 2–3 тонны свинца.
Выбросы вредных веществ в атмосферу – не единственная сторона воздействия тепловых двигателей на природу. Согласно законам термодинамики производство электрической и механической энергии в принципе не может быть осуществлено без отвода в окружающую среду значительных количеств теплоты. Это не может не приводить к постепенному повышению средней температуры на Земле.

Методы борьбы с вредными воздействиями тепловых двигателей на окружающую среду

Один из способов уменьшения путей загрязнения окружающей среды связан с использованием в автомобилях вместо карбюраторных бензиновых двигателей дизелей, в топливо которых не добавляют соединения свинца.
Перспективными являются разработки автомобилей, в которых вместо бензиновых двигателей применяются электродвигатели или двигатели, использующие в качестве топлива водород.
Другой способ заключается в увеличении КПД тепловых двигателей. В Институте нефтехимического синтеза им. А. В. Топчиева РАН разработаны новейшие технологии превращения углекислого газа в метанол (метиловый спирт) и диметиловый эфир, увеличивающие в 2–3 раза производительность аппаратов при значительном уменьшении электроэнергии. Здесь был создан реактор нового типа, в котором производительность увеличена в 2–3 раза.
Введение этих технологий снизит накопление углекислого газа в атмосфере и поможет не только создать альтернативное сырьё для синтеза многих органических соединений, основой для которых сегодня служит нефть, но и решить упомянутые выше экологические проблемы.

ЗАКЛЮЧЕНИЕ

Благодаря нашей работе можно сделать следующие выводы:
Не существовало бы двигателей внутреннего сгорания без использования теплового расширения газов. И в этом мы легко убеждаемся, рассмотрев подробно принцип работы ДВС, их рабочие циклы – вся их работа основана на использовании теплового расширении газов. Но ДВС – это только одно из конкретных применений теплового расширения. И судя по тому, какую пользу приносит тепловое расширение людям через двигатель внутреннего сгорания, можно судить о пользе данного явления в других областях человеческой деятельности.
И пускай проходит эра двигателя внутреннего сгорания, пусть у них есть много недостатков, пусть появляются новые двигатели, не загрязняющие внутреннюю среду и не использующие функцию теплового расширения, но первые еще долго будут приносить пользу людям, и люди через многие сотни лет будут по доброму отзываться о них, ибо они вывели человечество на новый уровень развития, а пройдя его, человечество поднялось еще выше.

Литература

1. Хрестоматия по физике: А. С. Енохович – М.: Просвещение, 1999
2. Детлаф А. А., Яворский Б. М. Курс физики: – М., Высшая школа., 1989.
3. Кабардин О. Ф. Физика: Справочные материалы: Просвещение 1991.
4. Интернет–ресурсы.


Авторы работы:
Кайгородов Илья,
Филипчук Евгений,
ученики 10 класса

Руководители работы:
Шаврова Т. Г. учитель физики,
Бачурин Д. Н. учитель информатики.

Муниципальное общеобразовательное учреждение
“Первомайская средняя общеобразовательная школа №2”
Бийского района Алтайского края

Презентация работы: http://static.livescience.ru/dvigatel/presentation.pdf

livescience.ru

Двигатель внутреннего сгорания - это... Что такое Двигатель внутреннего сгорания?

Дви́гатель вну́треннего сгора́ния (сокращённо ДВС) — это тип двигателя, тепловой машины, в которой химическая энергия топлива (обычно применяется жидкое или газообразное углеводородное топливо), сгорающего в рабочей зоне, преобразуется в механическую энергию.

Несмотря на то, что двигатель внутреннего сгорания относится к относительно несовершенному типу тепловых машин (громоздкость, сильный шум, токсичные выбросы и необходимость системы их отвода, относительно небольшой ресурс, необходимость охлаждения и смазки, высокая сложность в проектировании, изготовлении и обслуживании, сложная система зажигания, большое количество изнашиваемых частей, высокое потребление горючего и так далее), благодаря своей автономности (используемое топливо содержит гораздо больше энергии, чем лучшие электрические аккумуляторы), ДВС очень широко распространены, — например, на транспорте.

История создания

В 1799 году французский инженер Филипп Лебон открыл светильный газ. В 1799 году он получил патент на использование и способ получения светильного газа путём сухой перегонки древесины или угля, однако светильный газ годился не только для освещения.

В 1801 году Лебон взял патент на конструкцию газового двигателя. Принцип действия этой машины основывался на известном свойстве открытого им газа: его смесь с воздухом взрывалась при воспламенении с выделением большого количества теплоты. Продукты горения, стремительно расширяясь, оказывали сильное давление на окружающую среду — таким образом, оставалось только найти способ использования выделившейся энергии. В двигателе Лебона были предусмотрены два компрессора и камера смешивания. Один компрессор должен был накачивать в камеру сжатый воздух, а другой — сжатый светильный газ из газогенератора. Затем газовоздушная смесь поступала в рабочий цилиндр, где воспламенялась. Двигатель был двойного действия, то есть попеременно действовавшие рабочие камеры находились по обе стороны поршня. По существу, Лебон вынашивал мысль о двигателе внутреннего сгорания, однако в 1804 году он погиб, так и не успев воплотить в жизнь своё изобретение.

В последующие годы изобретатели из разных стран пытались создать работоспособный двигатель на светильном газе. Однако все эти попытки не привели к появлению на рынке двигателей, которые могли бы успешно конкурировать с паровой машиной.

Честь создания коммерчески успешного двигателя внутреннего сгорания принадлежит бельгийскому механику Жану Этьену Ленуару. Работая на гальваническом заводе, Ленуар пришёл к мысли, что топливовоздушную смесь в газовом двигателе можно воспламенять с помощью электрической искры, и решил построить двигатель на основе этой идеи. Решив возникшие по ходу проблемы (тугой ход и перегрев поршня, ведущий к заклиниванию) продумав систему охлаждения и смазки двигателя, Ленуар создал работоспособный двигатель внутреннего сгорания. В 1864 году было выпущено более трёхсот таких двигателей разной мощности. Разбогатев, Ленуар перестал работать над дальнейшим усовершенствованием своей машины, и это предопределило её судьбу — она была вытеснена с рынка более совершенным двигателем, созданным немецким изобретателем Августом Отто и получившим патент на изобретение своей модели газового двигателя в 1864 году.

В 1864 году немецкий изобретатель Августо Отто заключил договор с богатым инженером Лангеном для реализации своего изобретения — была создана фирма «Отто и Компания». Ни Отто, ни Ланген не владели достаточными знаниями в области электротехники и отказались от электрического зажигания. Воспламенение они осуществляли открытым пламенем через трубку. Цилиндр двигателя Отто, в отличие от двигателя Ленуара, был вертикальным. Вращаемый вал помещался над цилиндром сбоку. Принцип действия: вращающийся вал поднимал поршень на 1/10 высоты цилиндра, в результате чего под поршнем образовывалось разреженное пространство и происходило всасывание смеси воздуха и газа. Затем смесь воспламенялась. При взрыве давление под поршнем возрастало примерно до 4 атм. Под действием этого давления поршень поднимался, объём газа увеличивался и давление падало. Поршень сначала под давлением газа, а потом по инерции поднимался до тех пор, пока под ним не создавалось разрежение. Таким образом, энергия сгоревшего топлива использовалась в двигателе с максимальной полнотой. В этом заключалась главная оригинальная находка Отто. Рабочий ход поршня вниз начинался под действием атмосферного давления, и после того, как давление в цилиндре достигало атмосферного, открывался выпускной вентиль, и поршень своей массой вытеснял отработанные газы. Из-за более полного расширения продуктов сгорания КПД этого двигателя был значительно выше, чем КПД двигателя Ленуара и достигал 15 %, то есть превосходил КПД самых лучших паровых машин того времени. Кроме того, двигатели Отто были почти в пять раз экономичнее двигателей Ленуара, они сразу стали пользоваться большим спросом. В последующие годы их было выпущено около пяти тысяч штук. Несмотря на это, Отто упорно работал над усовершенствованием их конструкции. Вскоре была применена кривошипно-шатунная передача. Однако самое существенное из его изобретений было сделано в 1877 году, когда Отто получил патент на новый двигатель с четырёхтактным циклом. Этот цикл по сей день лежит в основе работы большинства газовых и бензиновых двигателей.

Типы двигателей внутреннего сгорания

Поршневой ДВС Роторный ДВС Газотурбинный ДВС

ДВС классифицируют:

а) По назначению — делятся на транспортные, стационарные и специальные.

б) По роду применяемого топлива — легкие жидкие (бензин, газ), тяжелые жидкие (дизельное топливо, судовые мазуты).

в) По способу образования горючей смеси — внешнее (карбюратор, инжектор) и внутреннее (в цилиндре ДВС).

г) По способу воспламенения (с принудительным зажиганием, с воспламенением от сжатия, калоризаторные).

д) По расположению цилиндров разделяют рядные, вертикальные, оппозитные с одним и с двумя коленвалами, V-образные с верхним и нижним расположением коленвала, VR-образные и W-образные, однорядные и двухрядные звездообразные, Н-образные, двухрядные с параллельными коленвалами, "двойной веер", ромбовидные, трехлучевые и некоторые другие.

Бензиновые

Бензиновые карбюраторные

Смесь топлива с воздухом готовится в карбюраторе, далее смесь подаётся в цилиндр, сжимается, а затем поджигается при помощи искры, проскакивающей между электродами свечи. Основная характерная особенность топливо-воздушной смеси в этом случае — гомогенность.

Бензиновые инжекторные

Также, существует способ смесеобразования путём впрыска бензина во впускной коллектор или непосредственно в цилиндр при помощи распыляющих форсунок (инжектор). Существуют системы одноточечного и распределённого впрыска различных механических и электронных систем. В механических системах впрыска дозация топлива осуществляется плунжерно — рычажным механизмом с возможностью электронной корректировки состава смеси. В электронных системах смесеобразование осуществляется под управлением электронного блока управления (ЭБУ), управляющим электрическими бензиновыми вентилями.

Дизельные, с воспламенением от сжатия

Дизельный двигатель характеризуется воспламенением топлива без использования свечи зажигания. В разогретый от сжатия воздух (до температуры, превышающей температуру воспламенения топлива) через форсунку впрыскивается порция топлива. В процессе впрыскивания топлива происходит его распыливание, а затем вокруг отдельных капель топлива возникают очаги сгорания. Т. к. дизельные двигатели не подвержены явлению детонации, характерному для двигателей с принудительным воспламенением, в них допустимо использование более высоких степеней сжатия (до 26), что благотворно сказывается на КПД данного типа двигателей, который может превышать 50% в случае с крупными судовыми двигателями.

Дизельные двигатели являются менее быстроходными и характеризуются большим крутящим моментом на валу. Дизельное топливо является более дешевым, нежели бензин. Также некоторые крупные дизельные двигатели приспособлены для работы на тяжелых топливах, например, мазутах. Запуск крупных дизельных двигателей осуществляется, как правило, за счет пневматической схемы с запасом сжатого воздуха, либо в случае с инверторными генераторными установками, от присоединенной электромашины, которая при обычной эксплуатации выполняет роль генератора.

Вопреки расхожему мнению, современные двигатели, традиционно называемые дизельными, работают не по циклу Дизеля, а по циклу Тринклера-Сабатэ со смешанным подводом теплоты.

Недостатки дизельных двигателей обусловлены особенностями рабочего цикла — более высокой механической напряженностью, требующей повышенной прочности конструкции и, как следствие, увеличения её габаритов, веса и увеличения стоимости за счёт усложнённой конструкции и использования более дорогих материалов. Также дизельные двигатели за счет гетерогенного сгорания характеризуются неизбежными выбросами сажи и повышенным содержанием оксидов азота в выхлопных газах.

Газовые

Двигатель, сжигающий в качестве топлива углеводороды, находящиеся в газообразном состоянии при нормальных условиях:

Газодизельные

Основная порция топлива приготавливается, как в одной из разновидностей газовых двигателей, но зажигается не электрической свечой, а запальной порцией дизтоплива, впрыскиваемого в цилиндр аналогично дизельному двигателю.

Роторно-поршневой

Предложен изобретателем Ванкелем в начале ХХ века. Основа двигателя — треугольный ротор (поршень), вращающийся в камере особой 8-образной формы, исполняющий функции поршня, коленвала и газораспределителя. Такая конструкция позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. За один оборот двигатель выполняет три полных рабочих цикла, что эквивалентно работе шестицилиндрового поршневого двигателя. Строился серийно фирмой НСУ в Германии (автомобиль RO-80), ВАЗом в СССР (ВАЗ-21018 "Жигули", ВАЗ-416, ВАЗ-426, ВАЗ-526), в настоящее время строится только Маздой (Mazda RX-8). При своей принципиальной простоте имеет ряд существенных конструктивных сложностей, делающих его широкое внедрение весьма затруднительным. Основные трудности связаны с созданием долговечных работоспособных уплотнений между ротором и камерой и с построением системы смазки.

В Германии в конце 70х годов ХХ века существовал анекдот: «Продам НСУ, дам в придачу два колеса, фару и 18 запасных моторов в хорошем состоянии».

Комбинированный двигатель внутреннего сгорания

Циклы работы поршневых ДВС

Двухтактный цикл Схема работы четырёхтактного двигателя, цикл Отто
1. впуск
2. сжатие
3. рабочий ход
4. выпуск

Поршневые двигатели внутреннего сгорания классифицируются по количеству тактов в рабочем цикле на двухтактные и четырёхтактные.

Рабочий цикл четырёхтактных двигателей внутреннего сгорания занимает два полных оборота кривошипа, состоящий из четырёх отдельных тактов:

  1. впуска,
  2. сжатия заряда,
  3. рабочего хода и
  4. выпуска (выхлопа).

Изменение рабочих тактов обеспечивается специальным газораспределительным механизмом, чаще всего он представлен одним или двумя распределительными валами, системой толкателей и клапанами, непосредственно обеспечивающими смену фазы. Некоторые двигатели внутреннего сгорания использовали для этой цели золотниковые гильзы (Рикардо), имеющие впускные и/или выхлопные окна. Сообщение полости цилиндра с коллекторами в этом случае обеспечивалось радиальным и вращательным движениями золотниковой гильзы, окнами открывающей нужный канал. Ввиду особенностей газодинамики — инерционности газов, времени возникновения газового ветра такты впуска, рабочего хода и выпуска в реальном четырёхтактном цикле перекрываются, это называется перекрытием фаз газораспределения. Чем выше рабочие обороты двигателя, тем больше перекрытие фаз и чем оно больше, тем меньше крутящий момент двигателя внутреннего сгорания на низких оборотах. Поэтому в современных двигателях внутреннего сгорания всё шире используются устройства, позволяющие изменять фазы газораспределения в процессе работы. Особенно пригодны для этой цели двигатели с электромагнитным управлением клапанами (BMW, Mazda). Имеются также двигатели с переменной степенью сжатия (СААБ), обладающие большей гибкостью характеристики.

Двухтактные двигатели имеют множество вариантов компоновки и большое разнообразие конструктивных систем. Основной принцип любого двухтактного двигателя — исполнение поршнем функций элемента газораспределения. Рабочий цикл складывается, строго говоря, из трёх тактов: рабочего хода, длящегося от верхней мёртвой точки (ВМТ) до 20—30 градусов до нижней мёртвой точки (НМТ), продувки, фактически совмещающей впуск и выхлоп, и сжатия, длящегося от 20—30 градусов после НМТ до ВМТ. Продувка, с точки зрения газодинамики, слабое звено двухтактного цикла. С одной стороны, невозможно обеспечить полное разделение свежего заряда и выхлопных газов, поэтому неизбежны либо потери свежей смеси, буквально вылетающей в выхлопную трубу (если двигатель внутреннего сгорания — дизель, речь идёт о потере воздуха), с другой стороны, рабочий ход длится не половину оборота, а меньше, что само по себе снижает КПД. В то же время длительность чрезвычайно важного процесса газообмена, в четырёхтактном двигателе занимающего половину рабочего цикла, не может быть увеличена. Двухтактные двигатели могут вообще не иметь системы газораспределения. Однако, если речь не идёт об упрощённых дешёвых двигателях, двухтактный двигатель сложнее и дороже за счёт обязательного применения воздуходувки или системы наддува, повышенная теплонапряжённость ЦПГ требует более дорогих материалов для поршней, колец, втулок цилиндров. Исполнение поршнем функций элемента газораспределения обязывает иметь его высоту не менее ход поршня + высота продувочных окон, что некритично в мопеде, но существенно утяжеляет поршень уже при относительно небольших мощностях. Когда же мощность измеряется сотнями лошадиных сил, увеличение массы поршня становится очень серьёзным фактором. Введение распределительных гильз с вертикальным ходом в двигателях Рикардо было попыткой сделать возможным уменьшение габаритов и массы поршня. Система оказалась сложной и дорогой в исполнении, кроме авиации, такие двигатели нигде больше не использовались. Выхлопные клапаны (при прямоточной клапанной продувке) имеют вдвое большую теплонапряжённость в сравнении с выхлопными клапанами четырёхтактных двигателей и худшие условия для теплоотвода, а их сёдла имеют более длительный прямой контакт с выхлопными газами.

Самой простой с точки зрения порядка работы и самой сложной с точки зрения конструкции является система Фербенкс — Морзе, представленная в СССР и в России, в основном, тепловозными дизелями серий Д100. Такой двигатель представляет собой симметричную двухвальную систему с расходящимися поршнями, каждый из которых связан со своим коленвалом. Таким образом, этот двигатель имеет два коленвала, механически синхронизированные; тот, который связан с выхлопными поршнями, опережает впускной на 20—30 градусов. За счёт этого опережения улучшается качество продувки, которая в этом случае является прямоточной, и улучшается наполнение цилиндра, так как в конце продувки выхлопные окна уже закрыты. В 30х — 40х годах ХХ века были предложены схемы с парами расходящихся поршней — ромбовидная, треугольная; существовали авиационные дизели с тремя звездообразно расходящимися поршнями, из которых два были впускными и один — выхлопным. В 20-х годах Юнкерс предложил одновальную систему с длинными шатунами, связанными с пальцами верхних поршней специальными коромыслами; верхний поршень передавал усилия на коленвал парой длинных шатунов, и на один цилиндр приходилось три колена вала. На коромыслах стояли также квадратные поршни продувочных полостей. Двухтактные двигатели с расходящимися поршнями любой системы имеют, в основном, два недостатка: во-первых, они весьма сложны и габаритны, во-вторых, выхлопные поршни и гильзы в зоне выхлопных окон имеют значительную температурную напряжённость и склонность к перегреву. Кольца выхлопных поршней также являются термически нагруженными, склонны к закоксовыванию и потере упругости. Эти особенности делают конструктивное исполнение таких двигателей нетривиальной задачей.

Двигатели с прямоточной клапанной продувкой оснащены распределительным валом и выхлопными клапанами. Это значительно снижает требования к материалам и исполнению ЦПГ. Впуск осуществляется через окна в гильзе цилиндра, открываемые поршнем. Именно так компонуется большинство современных двухтактных дизелей. Зона окон и гильза в нижней части во многих случаях охлаждаются наддувочным воздухом.

В случаях, когда одним из основных требований к двигателю является его удешевление, используются разные виды кривошипно-камерной контурной оконно-оконной продувки — петлевая, возвратно-петлевая (дефлекторная) в разнообразных модификациях. Для улучшения параметров двигателя применяются разнообразные конструктивные приёмы — изменяемая длина впускного и выхлопного каналов, может варьироваться количество и расположение перепускных каналов, используются золотники, вращающиеся отсекатели газов, гильзы и шторки, изменяющие высоту окон (и, соответственно, моменты начала впуска и выхлопа). Большинство таких двигателей имеет воздушное пассивное охлаждение. Их недостатки — относительно невысокое качество газообмена и потери горючей смеси при продувке, при наличии нескольких цилиндров секции кривошипных камер приходится разделять и герметизировать, усложняется и удорожается конструкция коленвала.

Дополнительные агрегаты, требующиеся для ДВС

Недостатком двигателя внутреннего сгорания является то, что он развивает наивысшую мощность только в узком диапазоне оборотов. Поэтому неотъемлемым атрибутом двигателя внутреннего сгорания является трансмиссия. Лишь в отдельных случаях (например, в самолётах) можно обойтись без сложной трансмиссии. Постепенно завоёвывает мир идея гибридного автомобиля, в котором мотор всегда работает в оптимальном режиме.

Кроме того, двигателю внутреннего сгорания необходимы система питания (для подачи топлива и воздуха — приготовления топливо-воздушной смеси), выхлопная система (для отвода выхлопных газов), также не обойтись без системы смазки(предназначена для уменьшения сил трения в механизмах двигателя, защиты деталей двигателя от коррозии, а также совместно с системой охлаждения для поддержания оптимального теплового режима), системы охлаждения(для поддержания оптимального теплового режима двигателя), система запуска (применяются способы запуска: электростартерный, с помощью вспомогательного пускового двигателя, пневматический, с помощью мускульной силы человека), система зажигания (для воспламениня топливо-воздушной смеси, применяется у двигателей с принудительным воспламенением).

См. также

Примечания

Ссылки

dic.academic.ru

Проект по физике на тему; "Двигатель внутреннего сгорания"

Муниципальное общеобразовательное учреждение-

средняя общеобразовательная школа №1

имени 397-й Сарненской дивизии

города Аткарска Саратовской области


Проект по физике

«Двигатель внутреннего сгорания»

Выполнил:

ученик 8 «Б» класса

Глухов Антон

Руководитель:

Илларионова Наталья Викторовна

г.Аткарск

2018 год

Цель проекта:

Узнать, что такое двигатель внутреннего сгорания, и где он используется.

Задачи проекта:

Содержание

1) Цели и задачи……………………………………………………………………………2

2) Введение…………………………………………………………………………………3

3) История создания двигателя внутреннего сгорания…………………………………4

4) Строение двигателя внутреннего сгорания……………………………………………7

5) Влияние двигателя внутреннего сгорания на окружающую среду…………………..10

6) Анкетирование…………………………………………………………………………..13

7) Практическое применение двигателя внутреннего сгорания………………………...14

8) Заключение………………………………………………………………………………15

Введение

Двигателем внутреннего сгорания (ДВС) называют поршневой тепловой двигатель, в котором процессы сгорания топлива, выделение теплоты и превращение ее в механическую работу происходят непосредственно в цилиндре двигателя.

Первый двигатель внутреннего сгорания (ДВС) был изобретен французским инженером Ленуаром в 1860 г. Этот двигатель во многом повторял паровую машину, работал на светильном газе по двухтактному циклу без сжатия. Мощность такого двигателя составляла примерно 8 л.с., КПД – около 5%. Этот двигатель Ленуара был очень громоздким и поэтому не нашел дальнейшего применения.

Через 7 лет немецкий инженер Н. Отто (1867 г.) создал 4-х-тактный двигатель с воспламенением от сжатия. Этот двигатель имел мощность 2 л.с., с числом оборотов 150 об/мин. Двигатель мощностью 10 л.с. имел КПД 17% , массу 4600 кг нашел широкое применение. Всего таких двигателей было выпущено более 6 тыс.1880 г. мощность двигателя была доведена до 100 л.с.

В 1885 г. в России капитан Балтийского флота И.С.Костович создал двигатель для воздухоплавания мощностью 80 л.с. с массой 240 кг. Тогда же в Германии Г.Даймлер и независимо от него К.Бенц создали двигатель небольшой мощность для самодвижущихся экипажей – автомобилей. С этого года началась эра автомобилей.

В конце 19 в. немецким инженером Дизелем был создан и запатентован двигатель, который впоследствии стали называть по имени автора двигателем Дизеля. Топливо в двигателе Дизеля подавалось в цилиндр сжатым воздухом от компрессора и воспламенялось от сжатия. КПД такого двигателя составляло примерно 30%.

Интересно, что за несколько лет до Дизеля русский инженер Тринклер разработал двигатель, работающий на сырой нефти по смешанному циклу – по которому работают все современные дизельные двигатели, однако он не был запатентован, а имя Тринклера мало кто теперь знает.

Двигатели внутреннего сгорания, особенно дизельные, нашли самое широкое применение в качестве силового оборудования на разнообразных строительных и дорожных машинах, требующих независимости от внешних источников энергии. Это, в первую очередь, транспортные (автомобили общего и специального назначения, седельные тягачи, тракторы), погрузочно-разгрузочные машины (вилочные и ковшовые погрузчики, многоковшовые погрузчики), стреловые самоходные краны, машины для земляных работ и т.д. На строительных и дорожных машинах применяются двигатели мощностью от 2 до 900 кВт. Особенностью их эксплуатации является то, что эти машины длительное время эксплуатируются на режимах близких к номинальным, при значительном и непрерывном изменении внешней нагрузки, повышенной запыленности воздуха, в существенно различных климатических условиях и нередко без гаражного хранения.

История создания двигателя внутреннего сгорания

Филипп Лебон

В 1801 году Лебон взял патент на конструкцию газового двигателя. Принцип действия этой машины основывался на известном свойстве открытого им газа: его смесь с воздухом взрывалась при воспламенении с выделением большого количества теплоты. Продукты горения стремительно расширялись, оказывая сильное давление на окружающую среду. Создав соответствующие условия, можно использовать выделяющуюся энергию в интересах человека. В двигателе Лебона были предусмотрены два компрессора и камера смешивания. Один компрессор должен был накачивать в камеру сжатый воздух, а другой — сжатый светильный газ из газогенератора. Газовоздушная смесь поступала потом в рабочий цилиндр, где воспламенялась. Двигатель был двойного действия, то есть попеременно действовавшие рабочие камеры находились по обе стороны поршня. По существу, Лебон вынашивал мысль о двигателе внутреннего сгорания, однако в 1804 году он был убит, не успев воплотить в жизнь своё изобретение.

Жан Этьен Ленуар

В последующие годы несколько изобретателей из разных стран пытались создать работоспособный двигатель на светильном газе. Однако все эти попытки не привели к появлению на рынке двигателей, которые могли бы успешно конкурировать с паровой машиной. Честь создания коммерчески успешного двигателя внутреннего сгорания принадлежит бельгийскому механику Жану Этьену Ленуару. Работая на гальваническом заводе, Ленуар пришёл к мысли, что топливовоздушную смесь в газовом двигателе можно воспламенять с помощью электрической искры, и решил построить двигатель на основе этой идеи.

Ленуар не сразу добился успеха. После того как удалось изготовить все детали и собрать машину, она проработала совсем немного и остановилась, так как из-за нагрева поршень расширился и заклинил в цилиндре. Ленуар усовершенствовал свой двигатель, продумав систему водяного охлаждения. Однако вторая попытка запуска также закончилась неудачей из-за плохого хода поршня. Ленуар дополнил свою конструкцию системой смазки. Только тогда двигатель начал работать.

Николаус Отто

К 1864 году было выпущено уже более 300 таких двигателей разной мощности. Разбогатев, Ленуар перестал работать над усовершенствованием своей машины, и это предопределило её судьбу — она была вытеснена с рынка более совершенным двигателем, созданным немецким изобретателем Николаусом Отто.

В 1864 году он получил патент на свою модель газового двигателя и в том же году заключил договор с богатым инженером Лангеном для эксплуатации этого изобретения. Вскоре была создана фирма «Отто и Компания».

На первый взгляд, двигатель Отто представлял собой шаг назад по сравнению с двигателем Ленуара. Цилиндр был вертикальным. Вращаемый вал помещался над цилиндром сбоку. Вдоль оси поршня к нему была прикреплена рейка, связанная с валом. Двигатель работал следующим образом. Вращающийся вал поднимал поршень на 1/10 высоты цилиндра, в результате чего под поршнем образовывалось разрежённое пространство и происходило всасывание смеси воздуха и газа. Затем смесь воспламенялась. Ни Отто, ни Ланген не владели достаточными знаниями в области электротехники и отказались от электрического зажигания. Воспламенение они осуществляли открытым пламенем через трубку. При взрыве давление под поршнем возрастало примерно до 4 атм. Под действием этого давления поршень поднимался, объём газа увеличивался и давление падало. При подъёме поршня специальный механизм отсоединял рейку от вала. Поршень сначала под давлением газа, а потом по инерции поднимался до тех пор, пока под ним не создавалось разрежение.

Таким образом, энергия сгоревшего топлива использовалась в двигателе с максимальной полнотой. В этом заключалась главная оригинальная находка Отто. Рабочий ход поршня вниз начинался под действием атмосферного давления, и после того, как давление в цилиндре достигало атмосферного, открывался выпускной вентиль, и поршень своей массой вытеснял отработанные газы. Из-за более полного расширения продуктов сгорания КПД этого двигателя был значительно выше, чем КПД двигателя Ленуара и достигал 15 %, то есть превосходил КПД самых лучших паровых машин того времени.

Поскольку двигатели Отто были почти в пять раз экономичнее двигателей Ленуара, они сразу стали пользоваться большим спросом. В последующие годы их было выпущено около пяти тысяч штук. Отто упорно работал над усовершенствованием их конструкции. Вскоре зубчатую рейку заменила кривошипно-шатунная передача. Но самое существенное из его изобретений было сделано в 1877 году, когда Отто взял патент на новый двигатель с четырёхтактным циклом. Этот цикл по сей день лежит в основе работы большинства газовых и бензиновых двигателей. В следующем году новые двигатели уже были запущены в производство.

Четырёхтактный цикл был самым большим техническим достижением Отто. Но вскоре обнаружилось, что за несколько лет до его изобретения точно такой же принцип работы двигателя был описан французским инженером Бо де Роша. Группа французских промышленников оспорила в суде патент Отто. Суд счёл их доводы убедительными. Права Отто, вытекавшие из его патента, были значительно сокращены, в том числе было аннулировано его монопольное право на четырёхтактный цикл.

Хотя конкуренты наладили выпуск четырёхтактных двигателей, отработанная многолетним производством модель Отто всё равно была лучшей, и спрос на неё не прекращался. К 1897 году было выпущено около 42 тысяч таких двигателей разной мощности. Однако то обстоятельство, что в качестве топлива использовался светильный газ, сильно суживало область применения первых двигателей внутреннего сгорания. Количество светильногазовых заводов было незначительно даже в Европе, а в России их вообще было только два- в Москве и Петербурге.

Бензиновый двигатель

Работоспособный бензиновый двигатель появился только десятью годами позже. Вероятно, первым его изобретателем можно назвать Костовича О.С., предоставившим работающий прототип бензинового двигателя в 1880 году. Однако его открытие до сих пор остается слабо освещенным. В Европе в создании бензиновых двигателей наибольший вклад внес немецкий инженер Готлиб Даймлер. Много лет он работал в фирме Отто и был членом её правления. В начале 80-х годов он предложил своему шефу проект компактного бензинового двигателя, который можно было бы использовать на транспорте. Отто отнёсся к предложению Даймлера холодно. Тогда Даймлер вместе со своим другом Вильгельмом Майбахом принял смелое решение — в 1882 году они ушли из фирмы Отто, приобрели небольшую мастерскую близ Штутгарта и начали работать над своим проектом.

Проблема, стоявшая перед Даймлером и Майбахом, была не из лёгких: они решили создать двигатель, который не требовал бы газогенератора, был бы очень лёгким и компактным, но при этом достаточно мощным, чтобы двигать экипаж. Увеличение мощности Даймлер рассчитывал получить за счёт увеличения частоты вращения вала, но для этого необходимо было обеспечить требуемую частоту воспламенения смеси. В 1883 году был создан первый калильный бензиновый двигатель с зажиганием от раскалённой трубочки, вставляемой в цилиндр. Первая модель бензинового двигателя предназначалась для промышленной стационарной установки. Процесс испарения жидкого топлива в первых бензиновых двигателях оставлял желать лучшего. Поэтому настоящую революцию в двигателестроении произвело изобретение карбюратора. Создателем его считается венгерский инженер Донат Банки. В 1893 году он взял патент на карбюратор с жиклёром, который был прообразом всех современных карбюраторов. В отличие от своих предшественников Банки предлагал не испарять бензин, а мелко распылять его в воздухе. Это обеспечивало его равномерное распределение по цилиндру, а само испарение происходило уже в цилиндре под действием тепла сжатия. Для обеспечения распыления всасывание бензина происходило потоком воздуха через дозирующий жиклёр, а постоянство состава смеси достигалось за счёт поддержания постоянного уровня бензина в карбюраторе. Жиклёр выполнялся в виде одного или нескольких отверстий в трубке, располагавшейся перпендикулярно потоку воздуха. Для поддержания напора был предусмотрен маленький бачок с поплавком, который поддерживал уровень на заданной высоте, так что количество всасываемого бензина было пропорционально количеству поступающего воздуха.

Строение и принцип действия ДВС

Строение ДВС

В устройстве двигателя поршень является ключевым элементом рабочего процесса. Поршень выполнен в виде металлического пустотелого стакана, расположенного сферическим дном (головка поршня) вверх. Направляющая часть поршня, иначе называемая юбкой, имеет неглубокие канавки, предназначенные для фиксации в них поршневых колец. Назначение поршневых колец – обеспечивать, во-первых, герметичность надпоршневого пространства, где при работе двигателя происходит мгновенное сгорание бензиново-воздушной смеси и образующийся расширяющийся газ не мог, обогнув юбку, устремиться под поршень. Во-вторых, кольца предотвращают попадание масла, находящегося под поршнем, в надпоршневое пространство. Таким образом, кольца в поршне выполняют функцию уплотнителей. Нижнее (нижние) поршневое кольцо называется маслосъемным, а верхнее (верхние) – компрессионным, то есть обеспечивающим высокую степень сжатия смеси.

Когда из карбюратора или инжектора внутрь цилиндра попадает топливно-воздушная или топливная смесь, она сжимается поршнем при его движении вверх и поджигается электрическим разрядом от свечи системы зажигания (в дизеле происходит самовоспламенение смеси за счет резкого сжатия). Образующиеся газы сгорания имеют значительно больший объем, чем исходная топливная смесь, и, расширяясь, резко толкают поршень вниз. Таким образом, тепловая энергия топлива преобразуется в возвратно-поступательное (вверх-вниз) движение поршня в цилиндре.

Далее необходимо преобразовать это движение во вращение вала. Происходит это следующим образом: внутри юбки поршня расположен палец, на котором закрепляется верхняя часть шатуна, последний шарнирно зафиксирован на кривошипе коленчатого вала. Коленвал свободно вращается на опорных подшипниках, что расположены в картере двигателя внутреннего сгорания. При движении поршня шатун начинает вращать коленвал, с которого крутящий момент передается на трансмиссию и – далее через систему шестерен – на ведущие колеса.

Принцип работы двигателя внутреннего сгорания

Современный автомобиль, чаше всего, приводится в движение двигателем внутреннего сгорания. Таких двигателей существует огромное множество. Различаются они объемом, количеством цилиндров, мощностью, скоростью вращения, используемым топливом (дизельные, бензиновые и газовые ДВС). Но, принципиально, устройство двигателя внутреннего сгорания, похоже.

Как работает двигатель и почему называется четырехтактным двигателем внутреннего сгорания? Про внутреннее сгорание понятно. Внутри двигателя сгорает топливо. А почему 4 такта двигателя, что это такое? Действительно, бывают и двухтактные двигатели. Но на автомобилях они используются крайне редко.

Четырехтактным двигатель называется из-за того, что его работу можно разделить на четыре, равные по времени, части. Поршень четыре раза пройдет по цилиндру – два раза вверх и два раза вниз. Такт начинается при нахождении поршня в крайней нижней или верхней точке. У автомобилистов-механиков это называется верхняя мертвая точка и нижняя мертвая точка.

Первый такт - такт впуска

Первый такт, он же впускной, начинается с ВМТ (верхней мертвой точки). Двигаясь вниз, поршень, всасывает в цилиндр топливовоздушную смесь. Работа этого такта происходит при открытом клапане впуска. Кстати, существует много двигателей с несколькими впускными клапанами. Их количество, размер, время нахождения в открытом состоянии может существенно повлиять на мощность двигателя. Есть двигатели, в которых, в зависимости от нажатия на педаль газа, происходит принудительное увеличение времени нахождения впускных клапанов в открытом состоянии. Это сделано для увеличения количества всасываемого топлива, которое, после возгорания, увеличивает мощность двигателя. Автомобиль, в этом случае, может гораздо быстрее ускориться.

Второй такт - такт сжатия

Следующий такт работы двигателя – такт сжатия. После того как поршень достиг нижней точки, он начинает подниматься вверх, тем самым, сжимая смесь, которая попала в цилиндр в такт впуска. Топливная смесь сжимается до объемов камеры сгорания. Что это за такая камера? Свободное пространство между верхней частью поршня и верхней частью цилиндра при нахождении поршня в верхней мертвой точке называется камерой сгорания. Клапаны, в этот такт работы двигателя закрыты полностью. Чем плотнее они закрыты, тем сжатие происходит качественнее. Большое значение имеет, в данном случае, состояние поршня, цилиндра, поршневых колец. Если имеются большие зазоры, то хорошего сжатия не получится, а соответственно, мощность такого двигателя будет гораздо ниже. Компрессию можно проверить специальным прибором. По величине компрессии можно сделать вывод о степени износа двигателя.

Третий такт - рабочий ход

Третий такт – рабочий, начинается с ВМТ. Рабочим он называется неслучайно. Ведь именно в этом такте происходит действие, заставляющее автомобиль двигаться. В этом такте в работу вступает система зажигания. Почему эта система так называется? Да потому, что она отвечает за поджигание топливной смеси, сжатой в цилиндре, в камере сгорания. Работает это очень просто – свеча системы дает искру. Справедливости ради, стоит заметить, что искра выдается на свече зажигания за несколько градусов до достижения поршнем верхней точки. Эти градусы, в современном двигателе, регулируются автоматически «мозгами» автомобиля.

После того как топливо загорится, происходит взрыв – оно резко увеличивается в объеме, заставляя поршень двигаться вниз. Клапаны в этом такте работы двигателя, как и в предыдущем, находятся в закрытом состоянии.

Четвертый такт - такт выпуска

Четвертый такт работы двигателя, последний – выпускной. Достигнув нижней точки, после рабочего такта, в двигателе начинает открываться выпускной клапан. Таких клапанов, как и впускных, может быть несколько. Двигаясь вверх, поршень через этот клапан удаляет отработавшие газы из цилиндра – вентилирует его. От четкой работы клапанов зависит степень сжатия в цилиндрах, полное удаление отработанных газов и необходимое количество всасываемой топливно-воздушной смеси.

После четвертого такта наступает черед первого. Процесс повторяется циклически. А за счет чего происходит вращение – работа двигателя внутреннего сгорания все 4 такта, что заставляет поршень подниматься и опускаться в тактах сжатия, выпуска и впуска? Дело в том, что не вся энергия, получаемая в рабочем такте, направляется на движение автомобиля. Часть энергии идет на раскручивание маховика. А он, под действием инерции, крутит коленчатый вал двигателя, перемещая поршень в период «нерабочих» тактов.

Влияние ДВС на окружающую среду

При полном сгорании углеводородов конечными продуктами являются углекислый газ и вода. Однако полного сгорания в поршневых ДВС достичь технически невозможно. Сегодня порядка 60% из общего количества вредных веществ, выбрасываемых в атмосферу крупных городов, приходится на автомобильный транспорт.

В состав отработавших газов ДВС входит более 200 различных химических веществ. Среди них:

Оксиды азота в отработавших газах образуются в результате обратимой реакции окисления азота кислородом воздуха под воздействием высоких температур и давления. По мере охлаждения отработавших газов и разбавления их кислородом воздуха оксид азота превращается в диоксид. Оксид азота (NO) – бесцветный газ, диоксид азота (NO2 ) – газ красно-бурого цвета с характерным запахом. Оксиды азота при попадании в организм человека соединяются с водой. При этом они образуют в дыхательных путях соединения азотной и азотистой кислоты. Оксиды азота раздражающе действуют на слизистые оболочки глаз, носа, рта. Воздействие NO2 способствует развитию заболеваний легких. Симптомы отравления проявляются только через 6 часов в виде кашля, удушья, возможен нарастающий отек легких.

Причиной образования углеводородов (СН) является неоднородность состава горючей смеси в камере сгорания двигателя, а также неравномерность температуры и давления в различных ее частях. В некоторых зонах цилиндра (паразитных объемах) топливо практически не сгорает, так как происходит обрыв цепной реакции окисления углеводородов.

Оксиды азота и углеводороды тяжелее воздуха и могут накапливаться вблизи дорог и улиц. В них под воздействием солнечного света проходят различные химические реакции. Разложение оксидов азота приводит к образованию озона (О3 ). В нормальных условиях озон не стоек и быстро распадается, но в присутствии углеводородов процесс его распада замедляется. Он активно вступает в реакции с частичками влаги и другими соединениями, образуя смог. Кроме того, озон разъедает глаза и легкие.

Состав отработавших газов дизельных двигателей отличается от бензиновых. В дизельном двигателе происходит более полное сгорание топлива. При этом образуется меньше окиси углерода и несгоревших углеводородов. Но, вместе с этим, за счет избытка воздуха в дизеле образуется большее количество оксидов азота.

В отработавших газах также обнаружен акреолин (особенно при работе дизельных двигателей). Он имеет запах пригорелых жиров и при содержании более 0.004 мг/л вызывает раздражение верхних дыхательных путей, а также воспаление слизистой оболочки глаз.

Чтобы предотвратить экологические проблемы люди стали искать альтернативные виды двигателей:

а) Электродвигатель — электрическая машина, в которой электрическая энергия преобразуется в механическую.

Электромобиль появился раньше, чем двигатель внутреннего сгорания. Первый электромобиль в виде тележки с электромотором был создан в 1841 году. Первый двухместный электромобиль русского инженера-изобретателя Ипполита Романова образца 1899 года изменял скорость движения в девяти градациях — от 1,6 км в час до максимальной в 37,4 км в час. В первой четверти XX века широкое распространение получили электромобили и автомобили с паровой машиной. В 1900 году примерно половина автомобилей в США была на паровом ходу, в 1910-х в Нью-Йорке в такси работало до 70 тысяч электромобилей. Значительное распространение в начале века получили и грузовые электромобили, а также электрические омнибусы (электробусы). Возрождение интереса к электромобилям произошло в 1960-е годы из-за экологических проблем автотранспорта, а в 1970-е годы и из-за резкого роста стоимости топлива в результате энергетических кризисов.

б) Гибридный двигатель — двигатель, комбинирующий преимущества обоих моторов: ДВС и электродвигателя. Применяется в автомобилях как альтернатива двигателю внутреннего сгорания. Первоначально идея организации принципа «электрической коробки передач», то есть замены механической коробки передач на электрические провода, была воплощена в железнодорожном транспорте и большегрузных карьерных самосвалах. Причина применения такой схемы обусловлена огромными сложностями механической передачи управляемого крутящего момента на колеса мощного транспортного средства

Первым автомобилем с гибридным приводом считается Lohner-Porsche. Автомобиль был разработан конструктором Фердинандом Порше в 1900 — 1901 годах. В Советском Союзе также велись работы по разработке гибридных автомобилей. Так, работы советского ученого Нурбея Гулиа привели к созданию прототипа гибридного автомобиля на базе автомобиля-грузовика УАЗ-450.

в) Водородный ДВС — это двигатель, использующий в качестве топлива водород.

В конце 70-ых годов прошлого века исследователи пришли к выводу, что заменителем нефти и ее производных станет водород. Работы по созданию 21 двигателей, работающих на водородном топливе, велись в США, Германии, Японии и в СССР. Ученые Ленинградского Политехнического института начали исследования по возможности создания автомобиля, двигатель которого работает на водороде. В Германии, США и Японии работы не прекращаются и сейчас, там довольно большой парк экспериментальных водородных автомобилей. Необходимые затраты для получения сжиженного водорода довольно быстро окупаются при больших пробегах автомобиля. Для поездок на малые расстояния могут быть более выгодны установки с гидридным способом хранения водорода — в порошке. Порошок подогревается отработавшими газами, и водород переходит в газообразное состояние. За эти 15 лет технологии сделали определенный шаг вперед по водородной тематике.

Сейчас компания Дженерал Моторс разработала автомобиль, работающий на водородном топливе. Его эффективность в четыре раза превышает обычные машины, использующие бензин. Экономия топлива в этой машине эквивалентна потреблению бензина 3 литра на 100 км. По внешнему виду машина не отличается от традиционных моделей. Топливный бак придется заполнять через каждые 800 км. До скорости 90 км\ ч машине понадобится 9 секунд. Специалисты Мюнхенского Технического университета перевели на чистый водород некоторые модели ВМW. Сжиженный водород хранится на автомобиле в криогенном баке. Широкое внедрение водородного топлива сдерживается более высокой ценой водорода по сравнению с привычными топливами, а также отсутствием необходимой инфраструктуры.

Анкетирование

  1. Вопрос: «Вы знаете, что такое двигатель внутреннего сгорания?»

Количество опрошенных: 30 человек

Ответы: Да - 21 человек

Нет - 9 человек

  1. Вопрос: «Как Вы считаете, где чаще используются двигатели внутреннего сгорания?»

Количество опрошенных:30 человек

Ответы:

Практическое применение ДВС

Применение двигателей внутреннего сгорания чрезвычайно разнообразно. Они приводят в движение самолеты, теплоходы, автомобили, тракторы, тепловозы, строительные краны. Мощные двигатели внутреннего сгорания устанавливают на речных и морских судах.  

Применение двигателей внутреннего сгорания, работающих на жидком топливе, однако, ограничивается транспортными и судовыми установками вследствие меньших ресурсов жидкого топлива сравнительно с каменным углем. Двигатели внутреннего сгорания на стационарных установках применяются также в районах, где жидкое и газообразное топливо используется в качестве основного.

Эффективность применения двигателей внутреннего сгорания в значительной степени определяется их долговечностью и надежностью в эксплуатации. Одним из важных факторов при этом является износостойкость, зависящая не только от металлофизических характеристик поверхностей трения, но и от свойств смазочного масла, способов подачи к узлам трения, а также от конструкции системы смазки. Для обеспечения надежной работы современных двигателей внутреннего сгорания большое значение имеет предотвращение образования в них лаков, нагаров, низкотемпературных осадков, коррозии поверхностей некоторых деталей, а также очистка масла в двигателях ( фильтрация, центрифугирование) от образующихся в нем механических примесей. Все перечисленные вопросы отражены в книге.

Повышение экономичности применения двигателей внутреннего сгорания, снижение трудоемкости технического ухода за ними имеет важное народнохозяйственное значение. Большую роль при этом играет установление обоснованных сроков замены масла. Малые сроки замены масла приводят к значительному его перерасходу; особенно это заметно в связи с тем, что ряд удачных конструктивных и технологических решений способствовал снижению проникновения масла в камеры сгорания и его расхода на угар в современных двигателях.

В настоящее время применение двигателей внутреннего сгорания на промыслах весьма ограничено, а с расширением применения двигателей внутреннего сгорания потребность в бензине непрерывно увеличилась.

Исключительное разнообразие областей применения двигателей внутреннего сгорания обусловливает соответственно и многообразие конструктивных форм этих двигателей, а также значительные трудности их классификации.

В виду чрезвычайного разнообразия областей применения двигателей внутреннего сгорания и соответственно многочисленности конструкций и типов двигателей, различающихся как по условиям работы, так и по видам применяемого топлива, не представляется возможным дать единые нормы испытаний для всех двигателей внутреннего сгорания.

Вместе с тем по условиям работы двигатели внутреннего сгорания могут быть разделены на три основные группы:

1) двигатели, работающие при постоянном числе оборотов под воздействием скоростного регулятора, - стационарные и с ручной регулировкой – судовые

2) двигатели, работающие при переменных числах оборотов, обычно быстроходные

3) двигатели, работающие при постоянном высоком числе оборотов.

Заключение

В итоге проделанной работы цели и задачи, поставленные в начале, достигнуты. Я выяснил, что такое ДВС. ДВС - поршневой тепловой двигатель, в котором процессы сгорания топлива, выделение теплоты и превращение ее в механическую работу происходят непосредственно в цилиндре двигателя.

Также изучил историю создания ДВС. Первый ДВС был изобретен Ленуаром в 1860 г. Через 7 лет немецкий инженер Отто создал 4-х-тактный двигатель с воспламенением от сжатия. В 1885 г. в России капитан Балтийского флота Костович создал двигатель для воздухоплавания. В конце 19 века немецким инженером Дизелем был создан двигатель, который впоследствии стали называть по имени автора. В настоящее время дизели применяются на разных транспортных машинах.

После узнал строение ДВС. Главным элементом является поршень. Внутри поршня расположен палец, на котором закрепляется верхняя часть шатуна, тот шарнирно зафиксирован на кривошипе коленчатого вала. В надпоршневом пространстве расположены впускной и выпускной клапаны, а также свеча зажигания.

Двигатели внутреннего сгорания бывают двух- и четырехтактные. На современных автомобилях чаще ставят четырехтактные.

1 такт – впуск смеси бензина с воздухом

2 такт – сжатие горючей смеси

3 такт – рабочий ход (расширение газа)

4 такт – выпуск отработанных газов

ДВС оказывает на окружающую среду отрицательное влияние. Углеводороды, которые должны разделяться на воду и углекислый газ, полностью не сгорают и выбрасываются в атмосферу вместе с оксидом азота, диоксидом серы и других металлов.

Чтобы предотвратить экологические проблемы люди стали искать альтернативные виды двигателей, таких как:

В настоящее время двигатели внутреннего сгорания ставят на легковые и грузовые автомобили, самолеты, теплоходы, тракторы, тепловозы, строительные краны, а также на речные и морские суда.

Выводы:

infourok.ru

«Двигатель внутреннего сгорания»: содержание, сюжет

Телеканал «Домашний» продолжает радовать своих зрителей новыми премьерами. На этот раз телеканал покажет своим зрителям мини-сериал под названием «Двигатель внутреннего сгорания». Серий 4. Все серии покажут в течении одного дня. В данной статье вы сможете прочитать краткое содержание, а также сюжет мини-сериала. Позже мы напишем, чем закончится данная кинокартина.

Актеры и роли:

«Двигатель внутреннего сгорания»: содержание, сюжет

В центре сюжета сериала оказалась семья руководителя машиностроительного завода Павла Короленко, который рано овдовел и самостоятельно воспитал дочь Евгению. Счастье дочери — главное для Павла. Он мечтает, что Евгения женится и подарит ему внука, который будет продолжать семейное дело — машиностроение. Однако девушка с детства мечтает стать инженером-изобретателем и, получив образование, устроиться на работу в бюро выдающегося конструктора Владимира Громыко. Однако, и здесь девушка сталкивается с непониманием: Владимир Громыко считает, что машиностроение — абсолютно не женское дело. И тогда в голову Евгении приходит неожиданная идея. Переодевшись мужчиной, она становится Евгением Кравченко и получает должность инженера в конструкторском бюро. Владимир Громыко и Евгений Кравченко становятся лучшими друзьями. Владимир рад, что у него появился единомышленник, он полностью доверяет «другу Женьке» и даже делает его участником своих веселых холостяцких приключений. Но неожиданно для себя девушка начинает влюбляться в своего руководителя. Тогда она прибегает к еще более решительному плану, который резко изменит жизнь главных героев ленты.

Чем закончится?

Как всегда, подобные кинокартины заканчиваются хорошо, дабы не расстроить своего зрителя.

Павел Короленко наконец-то узнает, кто же такой это смелый мальчишка. И будет очень удивлен, когда им окажется его дочь. Не меньше будет удивлен и сам Владимир. Позже Павел поймет, что нужно уважать профессию дочери. Ведь благодаря ей существует его завод. В финале сериала он скажет, что Женя является лучшим инженером на заводе. Владимир и Женя наконец-то поженятся.

"Двигатель внутреннего сгорания": содержание, сюжет

Кадр

На нашем сайте вы также можете прочитать обзор на фильмы и сериалы, которые выйдут в скором времени в эфир телеканалов. Также мы публикуем обзоры на фильмы, которые скоро выйдут на больших экранах.

fastotvet.ru

История создания двигателя внутреннего сгорания

Изобретение двигателя внутреннего сгорания.
На протяжении истории человечества люди пытались заменить ручную работу машинами. Уже в 18 веке в промышленности использовался паровой двигатель. Но это устройство было громоздким, имело низкий коэффициент полезного действия, требовало значительных сил по обслуживанию. Если в цилиндре парового двигателя пар заменить топливом и там сжигать, то получится выигрыш в мощности, уменьшатся размеры устройства, повысится КПД. Какое топливо использовать? Первоначально пытались использовать угольную пыль, смесь водорода с воздухом. Но первые устойчиво работающие двигатели получилось сделать при использовании газа, позже – нефтепродуктов.
Некоторые конструктивные элементы двигателя разработаны исследователями на основании открытий предыдущих веков. Еще в 6-ом веке нашей эры кривошипно-шатунный механизм использовался на лесопильных устройствах в Малой Азии и Сирии. Первое упоминание коленчатого вала датируется 1206 годом. Аль-Джазари применил его в двухцилиндровом насосе.
Инженер из Франции Филипп Лебон Д’Хумберстейн в 1801 г. запатентовал двухтактный двигатель, где использовалось сжатие топливной смеси. Двигатель работал на светильном газе, получаемом способом перегонки без доступа кислорода древесины или угля. Конструктор не построил действующую модель из-за гибели в 1804 г.
Французы Джозеф Никефор Ниепсе и его брат Клод в 1807 г. запустили двигатель, где топливом использовали угольную пыль. Этот образец применяли в качестве лодочного мотора. Еще один француз Франсуа Исаак де Риваз в то же время предложил модель двигателя на водороде. В нем имелись некоторые узлы, примененные впоследствии в последующих разработках: поршневая группа и устройство искрового зажигания топливной смеси.
Первый двигатель, в дальнейшем использовавшийся в промышленности, запатентовал и изготовил в 1823 г. английский инженер Сэмюэль Браун.
Итальянцы также работали над созданием нового мотора. Эудженио Барсанти вместе с Феличе Маттеуччи предложили свою модель двигателя внутреннего сгорания в 1853 г.
В 1860 г. изобретатель из Франции Жан Этьен Ленуар сделал устойчиво работающий двухтактный двигатель. Модель имела водяное охлаждение, систему смазки, появился кривошипно-шатунный механизм. Топливом служил светильный газ. Поджигание горючей смеси производилось с помощью искры от постороннего источника. Двигатель нашел практическое применение, выпускался массово.
Конструктор из Германии Николаус Аугуст Отто в 1860 г., взяв за основу модель Ленуара, придумал свой двигатель, но запатентовать его не получилось. В 1863 г. он создал еще один работающий образец двухтактного атмосферного двигателя. Двигатели Отто оказались лучше.
Прорыв в двигателестроении произошел с изобретением устройства для приготовления и подачи топливной смеси – карбюратора. Еще в 1838 г. Уильяму Бартнеру выдали патент на это устройство. В 1864 г. Зигфрид Маркус сконструировал одноцилиндровый карбюраторный двигатель, работающий от сгорания нефтепродуктов.
Делались попытки использовать в качестве топлива керосин. В 1872 г. такие опыты проводил американец Брайтон. Но впоследствии керосин, из-за плохого испарения, заменили бензином. В это же время Брайтон изобрел «испарительный» карбюратор, но он работал плохо.
В 1877 г. Отто получил еще патент на новый четырехтактный двигатель. Устройство имело один цилиндр. Теоретическое описание принципа действия четырехтактного двигателя внутреннего сгорания сделал еще в 1861 г. французский инженер Эжен-Альфонс Бо де Роша. Во многих бензиновых двигателях до сегодняшнего дня применяется четырехтактный цикл. Производство моторов Отто началось в 1878 г.
В 1883 г. Готлиб Даймлер создал первый калильный двигатель. Зажигание бензина осуществлялось от специальной раскалённой трубочки.
В 1892 г. Рудольф Кристиан Карл Дизель запатентовал двигатель, работающий по новому принципу. Топливная смесь в нем загоралась от сжатия в цилиндре. В 1897 г. сделан первый работоспособный образец этого двигателя. Первоначально топливом в этих двигателях использовали растительные масла или лёгкие продукты переработки нефти. Дизельные двигатели нашли применения в промышленности и на транспорте.
Первые образцы испарительных карбюраторов работали плохо. Ускорилось производство двигателей только после изобретения карбюратора нового типа. Его создание принадлежит инженерам из Венгрии Донату Банки и Яношу Чонка, получившим в 1893 г. патент на распыливающий карбюратор с жиклёром. Принцип его работы используется в карбюраторах современных моторов. Конструкторы предложили испарение бензина заменить распылением. Благодаря чему топливо равномерно распределяется и испаряется уже камере сгорания. Через специальный дозирующий жиклер топливо всасывалось и распылялось. В карбюраторе имелось устройство, обеспечивающее постоянный уровень топлива, в нем поддерживался стабильный напор и состав горючей смеси, подачей воздуха регулировалось количество топлива, подаваемое в цилиндр. В 1898 г. Донат Банки разработал двигатель с высокой степенью сжатия и карбюратором с двумя диффузорами. В нем использован новый метод эмульсионного смесеобразования распылением, используемый и в наши дни.
С 19 века двигатели внутреннего сгорания стали неотъемлемой частью любого производства, применяются на транспорте, в быту. Работы по созданию двигателя параллельно велись в Европе, США, России. В одной краткой статье невозможно осветить всю историю. Здесь описаны только наиболее известные открытия в этой области.

www.istmira.com

Двигатель внутреннего сгорания история создания

Первый двигатель внутреннего сгорания: с чего все началось

Разработка первого двигателя внутреннего сгорания длилась почти два века, пока автомобилисты смогут узнать прототипы современных моторов. Все начиналось с газа, а не с бензина. В число людей, которые приложили свою руку к истории создания, являются — Отто, Бенц, Майбах, Форд и другие. Но, последние научные открытия перевернули весь автомир, поскольку отцом первого прототипа считался совсем не тот человек.

Леонардо и здесь руку приложил

До 2016 года основателем первого двигателя внутреннего сгорания считался Франсуа Исаак де Риваз. Но, историческая находка, сделанная английскими учеными, перевернула весь мир. При раскопках вблизи одного из французских монастырей, были найдены чертежи, которые принадлежали Леонардо да Винчи. Среди них был чертеж двигателя внутреннего сгорания.

Конечно, если смотреть на первые двигатели, которые создавали Отто и Даймлер, то можно найти конструктивные сходства, а вот с современными силовыми агрегатами их уже нет.

Легендарный да Винчи опередил свое время почти на 500 лет, но поскольку был скован технологиями своего времени, а также финансовыми возможностями, так и не смог сконструировать мотор.

Детально исследовав чертеж, современные историки, инженеры и автоконструкторы с мировым именем, пришли к выводу, что данный силовой агрегат мог работать и довольно продуктивно. Так, компания Форд занялась разработкой прототипа двигателя внутреннего сгорания, основываясь на чертежах да Винчи. Но, эксперимент удался только наполовину. Двигатель завести не удалось.

Но, некоторые современные доработки позволили, все-таки дать жизнь силовому агрегату. Он так и остался экспериментальным прототипом, но кое-что компания Форд, все-таки почерпнула для себя — это размер камер сгорания для легковых автомобилей В-класса, который составляет 83,7 мм. Как оказалось — это идеальный размер для сгорания воздушно-топливной смеси для такого класса моторов.

Инженерия и теория

Согласно историческим фактам, в XVII веке голландский ученый и физик Кристиан Хагенс разработал первый теоретический двигатель внутреннего сгорания на пороховой основе. Но, как и Леонардо был скован технологиями своего времени и воплотить свою мечту в реальность так и не смог.

Франция. 19 век. Начинается эпоха массовых механизаций и индустриализаций. В это время, как раз и можно создать, что-то невероятное. Первый, кто сумел собрать двигатель внутреннего сгорания, был француз Нисефор Ньепс, который он назвал — Пирэолофор. Он работал с братом Клодом, и они вместе до создания ДВС презентовали несколько механизмов, которые не нашли своих заказчиков.

В 1806 году в национальной французской академии прошла презентация первого мотора. Он работал на угольной пыли и имел ряд конструктивных недоработок. Несмотря на все недостатки, мотор получил положительные отзывы и рекомендации. Вследствие этого братья Ньепсе получили финансовую помощь и инвестора.

Первый двигатель продолжал развиваться. Более совершенный прототип был установлен на лодки и небольшие корабли. Но, Клоду и Нисефору этого было не достаточно, они хотели удивить весь мир, поэтому изучали разные точные науки, чтобы совершенствовать свой силовой агрегат.

Так, их старания увенчались успехами, и в 1815 году Нисефор находит труды химика Лавуазье, который пишет, что «летучие масла», которые являются частью нефтепродуктов, при взаимодействии с воздухов могут взрываться.

1817 год. Клод едет в Англию, с целью получения нового патента на двигатель, так как во Франции срок действия подходил к концу. На этом этапе братья расстаются. Клод начинает работать над мотором самостоятельно, не уведомив об этом брата, и требует с него денег.

Разработки Клода нашли подтверждение только в теории. Изобретенный двигатель не нашел широкого производства, поэтому стал частью инженерной истории Франции, а Ньепса увековечили памятником.

Сын известного физика и изобретатель Сади Карно издал трактат, который сделал его легендой автомобилестроительной индустрии и делает его знаменитым на весь мир. Работа насчитывала 200 экземпляров и называлась «Размышления о движущей силе огня и о машинах, способных развивать эту силу» изданная в 1824 году. Именно с этого момента начинается история термодинамики.

1858 год. Бельгийский ученый и инженер Жан Жосефа Этьен Ленуара собирает двухтактный двигатель. Отличительными элементами было то, что он имел карбюратор и первую систему зажигания. Топливом служил каменноугольный газ. Но, первый прототип работал всего несколько секунд, а потом навсегда вышел со строя.

Случилось это потому, что мотор не имел систем смазки и охлаждения. При этой неудачи Ленуар не сдался и продолжил работу над прототипом и уже в 1863 году мотор, установленный на 3-х колесный прототип автомобиля, проехал исторические первые 50 миль.

Все эти разработки положили начало эре автомобилестроения. Первые двигатели внутреннего сгорания продолжали разрабатываться, и их создатели увековечили свои имена в истории. Среди таких были — австрийский инженер Зигфрид Маркус, Джордж Брайтон и другие.

Руль принимают легендарные немцы

В 1876 году эстафету начинают принимать немецкие разработчики, чьи имена в наши дни гремят громко. Первый, кого следует отметить, стал Николас Отто и его легендарный «цикл Отто». Он первый разработал и сконструировал прототип двигатель на 4-х цилиндрах. После этого уже в 1877 году он патентует новый двигатель, который лежит в основе большинства современных моторов и самолетов начала 20 века.

Еще одно имя в истории автомобилестроения, которое многие знают и сегодня — Готлиб Даймлер. Он со своим другом и братом по инженерии Вильгельмом Майбахом разработали мотор на газовой основе.

1886 год стал переломным, поскольку именно Даймлер и Майбах создали первый автомобиль с двигателем внутреннего сгорания. Силовой агрегат получил название «Reitwagen». Этот движок ранее устанавливался на двухколесные транспортные средства. Майбах разработал первый карбюратор с жиклерами, который также эксплуатировался достаточно долго.

Для создания работоспособного двигателя внутреннего сгорания великим инженерам пришлось объединить свои силы и умы. Так, группа ученых, в которую вошли Даймлер, Майбах и Отто начали собирать моторы по две штуки в день, что на тот момент было большой скоростью. Но, как и всегда бывает, позиции ученых в совершенствовании силовых агрегатов разошлись и Даймлер уходит с команды, чтобы основать свою компанию. Вследствие этих событий Майбах следует своему другу.

1889 год Даймлер основывает первую автомобилестроительную фирму «Daimler Motoren Gesellschaft». В 1901 году Майбах собирает первый Мерседес, который положил начало легендарному немецкому бренду.

Еще одним не менее легендарным немецким изобретателем становится Карл Бенц. Его первый прототип двигателя мир увидел в 1886 году. Но, до момента создания первого своего мотора, он успел основать фирму «Benz & Company». Дальнейшая история просто потрясающая. Впечатленный разработками Даймлера и Майбаха, Бенц решил слить все компании воедино.

Так, сначала «Benz & Company» сливается с «Daimler Motoren Gesellschaft», и становиться «Daimler- Benz». Впоследствии соединение коснулось и Майбаха и компания стала называться «Mersedes- Benz».

Еще одно знаменательное событие в автомобилестроение случилось в 1889 году, когда Даймлер предложил разработку V-образного силового агрегата. Его идею подхватил Майбах и Бенц, и уже в 1902 году V-образные двигатели начали выпускаться на самолеты, а позже на автомобили.

Отец основатель автоиндустрии

Но, как не крути, самый большой взнос в развитие автомобилестроения и автодвигательных разработок внес американский конструктор, инженер и просто легенда — Генри Форд. Его лозунг: «Автомобиль для всех» нашел признание у простых людей, что и привлекло их. Основав в 1903 году компанию «Форд», он не только принялся за разработку нового поколения двигателей для своего автомобиля Форд А, но и дал новые рабочие места простых инженерам и людям.

В 1903 году против Форда выступил Селден, который утверждал, что первый использует его разработку двигателя. Судебный процесс длился целых 8 лет, но при этом, ни один из участников, так и не смог выиграть процесс, поскольку суд решил, что права Селдена не нарушены, а Форд использует свой тип и конструкцию мотора.

В 1917 году, когда США вступила в первую мировую войну, компания Форд начинает разработку первого тяжелого двигателя для грузовых автомобилей с повышенной мощностью. Так, к концу 1917 года Генри представляет первых бензиновый 4-х тактный 8-ми цилиндровый силовой агрегат Форд М, который начала устанавливаться на грузовые автомобили, а в последствие и во время 2-й мировой на некоторые грузовые самолеты.

Когда другие автомобилестроители переживали не самые лучшие времена, то компания Генри Форда процветала и имела возможность разрабатывать все новые варианты двигателей, которые нашли применение среди широкого автомобильного ряда автомобилей Форд.

Вывод

По сути, первый двигатель внутреннего сгорания изобрел Леонардо да Винчи, но это было только в теории, поскольку он был скован технологиями своего времени. А вот первый прототип поставил на ноги голландец Кристиан Хагенс. Потом были разработки французских братьев Ньепс.

Но, все же массовой популярности и разработки двигатели внутреннего сгорания получили с разработками таких великих немецких инженеров, как Отто, Даймлер и Майбах. Отдельно стоит отметить заслуги в разработках моторов отца основателя автоиндустрии — Генри Форда.

Двигатель внутреннего сгорания история создания

Бензиновый двигатель внутреннего сгорания прочно вошел в нашу жизнь и останется в ней еще на неопределенное время. Развитие альтернативных топливных технологий предполагает, что в некотором будущем бензиновый мотор станет в конечном счете лишь историей, однако его потенциал, по расчетам специалистов, исчерпан лишь на 75 процентов, что позволяет назвать бензиновый ДВС на данный момент одним из главных типов двигателей в на шем мире.

Изобретение бензинового мотора, как и многих других современных вещей, существование без которых сегодня немыслимо, произошло благодаря, в общем-то, случайности, когда в 1799 году французом Ф. Лебоном был открыт светильный газ – смесь водорода, окиси углерода, метана и некоторых других горючих газов. Как предполагает его название, светильный газ использовался для осветительных приборов, заменивших в то время свечи, однако в скором времени Лебон нашел ему и другое применение. Изучая свойства найденного газа, инженер заметил, что его смесь с воздухом взрывается, выделяя большое количество энергии, которую можно использовать в интересах человека. В 1801 году Лебон запатентовал первый газовый двигатель, состоящий из двух компрессоров и камеры сгорания. По существу газовый двигатель Лебона стал примитивным прототипом современного ДВС.

Нужно отметить, что попытки поставить тепловую энергию взрыва на службу человечеству предпринимались задолго до рождения Лебона. Еще в 17-м веке нидерландский ученый Христиан Гюйгенс использовал порох, чтобы приводить в движение водяные насосы, доставляющие воду в сады Версальского дворца, а итальянский физик Алессандро Вольта в конце 80-х годов 18 века изобрел «электрический пистолет», в котором электрическая искра воспламеняла смесь водорода и воздуха, выстреливая из ствола кусок пробки.

В 1804 году Лебон трагически погиб и развитие технологии внутреннего загорания на некоторое время приостановилось, пока бельгиец Жан Этьен Ленуар не догадался использовать принцип электрического зажигания для воспламенения смести в газовом двигателе. После нескольких неудачных попыток, Ленуару удалось создать работающий двигатель внутреннего сгорания, который он запатентовал в 1859 году. К сожалению, Ленуар оказался больше коммерсантом, чем изобретателем. Выпустив несколько сотен своих моторов, он заработал довольно приличную сумму денег и прекратил дальнейшее усовершенствование своего изобретения. Тем не менее, двигатель Ленуара, использовавшийся как привод локомотивов, дорожных экипажей, судов и в стационарном виде, считается первым в истории работающим двигателем внутреннего сгорания.

В 1864 году немецкий инженер Август Отто получил патент на собственную модель газового двигателя, КПД которого достигал 15-ти процентов, то есть был не только эффективнее двигателя Ленуара, но и эффективнее любого парового агрегата, существовавшего в то время. Совместно с промышленником Лангеном, Отто создал фирму «Отто и Компания», в планы которой входило производство новых моторов, которых было выпущено около 5 000 экземпляров. В 1877 году Отто запатентовал четырехтактный двигатель внутреннего сгорания, однако, как оказалось, четырехтактный цикл был изобретен еще за несколько лет до этой даты французом Бо де Рошем. Судебная тяжба между этими инженерами закончилась поражением Отто, в результате чего его монопольные права на четырёхтактный цикл были отозваны. Тем не менее, конструкция двигателя Отто во многом превосходила французский аналог, что и предопределило его успех – к 1897 году было выпущено уже 42 000 таких моторов различной мощности.

Светильный газ в качестве топлива для ДВС существенно суживал область их применения, поэтому инженерами из разных стран постоянно проводились поиски нового, более доступного горючего. Одним из первых изобретателей, применивших бензин в качестве топлива для ДВС, был американец Брайтон, разработавший в 1872 году так называемый «испарительный» карбюратор. Однако его конструкция была настолько несовершенной, что он оставил свои попытки.

Лишь через десять лет после изобретения Брайтона был создан работоспособный двигатель внутреннего сгорания, работающий на бензине. Готлиб Даймлер, талантливый немецкий инженер, работавший на фирме Отто, еще в начале 80-х годов 19-го века предложил начальнику разработанный им самим проект бензинового мотора, который можно было бы использовать на дорожном транспорте, однако Отто отверг его начинания. В ответ на это Даймлер и его друг Вильгельм Майбах уволились из «Отто и Компания» и организовали собственное дело. Первый бензиновый двигатель Даймлера-Майбаха появился в 1883 году и предназначался для установки стационарно. Зажигание в цилиндре происходило от полой раскаленной трубочки, но в целом конструкция мотора оставляла желать лучшего именно из-за неудовлетворительного зажигания, а так же процесса испарения бензина.

На этом этапе требовалась более простая и надежная система испарения бензина, которая была изобретена в 1893 году венгерским конструктором Донатом Банки. Он изобрел карбюратор, ставший прообразом карбюраторных систем, известных сегодня. Банки предложил революционную по тем временам идею – не испарять бензин – а равномерно распылять его по цилиндру. Поток воздуха всасывал бензин через дозирующий жиклёр, сделанный в форме трубки с отверстиями. Напор потока поддерживался посредством небольшого бачка с поплавком, обеспечивающим постоянную пропорциональную смесь воздуха и бензина.

С этого момента в истории развитие ДВС пошло по нарастающей. Первые карбюраторные моторы имели всего один цилиндр. Рост мощности достигался за счет увеличения объема цилиндра, однако уже к концу столетия начали появиться двухцилиндровые двигатели, а с началом 20-го века все большее распространение начали получать моторы с четырьмя цилиндрами.

История создания двигателя внутреннего сгорания

Изобретение двигателя внутреннего сгорания.
На протяжении истории человечества люди пытались заменить ручную работу машинами. Уже в 18 веке в промышленности использовался паровой двигатель. Но это устройство было громоздким, имело низкий коэффициент полезного действия, требовало значительных сил по обслуживанию. Если в цилиндре парового двигателя пар заменить топливом и там сжигать, то получится выигрыш в мощности, уменьшатся размеры устройства, повысится КПД. Какое топливо использовать? Первоначально пытались использовать угольную пыль, смесь водорода с воздухом. Но первые устойчиво работающие двигатели получилось сделать при использовании газа, позже – нефтепродуктов.
Некоторые конструктивные элементы двигателя разработаны исследователями на основании открытий предыдущих веков. Еще в 6-ом веке нашей эры кривошипно-шатунный механизм использовался на лесопильных устройствах в Малой Азии и Сирии. Первое упоминание коленчатого вала датируется 1206 годом. Аль-Джазари применил его в двухцилиндровом насосе.
Инженер из Франции Филипп Лебон Д’Хумберстейн в 1801 г. запатентовал двухтактный двигатель, где использовалось сжатие топливной смеси. Двигатель работал на светильном газе, получаемом способом перегонки без доступа кислорода древесины или угля. Конструктор не построил действующую модель из-за гибели в 1804 г.
Французы Джозеф Никефор Ниепсе и его брат Клод в 1807 г. запустили двигатель, где топливом использовали угольную пыль. Этот образец применяли в качестве лодочного мотора. Еще один француз Франсуа Исаак де Риваз в то же время предложил модель двигателя на водороде. В нем имелись некоторые узлы, примененные впоследствии в последующих разработках: поршневая группа и устройство искрового зажигания топливной смеси.
Первый двигатель, в дальнейшем использовавшийся в промышленности, запатентовал и изготовил в 1823 г. английский инженер Сэмюэль Браун.
Итальянцы также работали над созданием нового мотора. Эудженио Барсанти вместе с Феличе Маттеуччи предложили свою модель двигателя внутреннего сгорания в 1853 г.
В 1860 г. изобретатель из Франции Жан Этьен Ленуар сделал устойчиво работающий двухтактный двигатель. Модель имела водяное охлаждение, систему смазки, появился кривошипно-шатунный механизм. Топливом служил светильный газ. Поджигание горючей смеси производилось с помощью искры от постороннего источника. Двигатель нашел практическое применение, выпускался массово.
Конструктор из Германии Николаус Аугуст Отто в 1860 г., взяв за основу модель Ленуара, придумал свой двигатель, но запатентовать его не получилось. В 1863 г. он создал еще один работающий образец двухтактного атмосферного двигателя. Двигатели Отто оказались лучше.
Прорыв в двигателестроении произошел с изобретением устройства для приготовления и подачи топливной смеси – карбюратора. Еще в 1838 г. Уильяму Бартнеру выдали патент на это устройство. В 1864 г. Зигфрид Маркус сконструировал одноцилиндровый карбюраторный двигатель, работающий от сгорания нефтепродуктов.
Делались попытки использовать в качестве топлива керосин. В 1872 г. такие опыты проводил американец Брайтон. Но впоследствии керосин, из-за плохого испарения, заменили бензином. В это же время Брайтон изобрел «испарительный» карбюратор, но он работал плохо.
В 1877 г. Отто получил еще патент на новый четырехтактный двигатель. Устройство имело один цилиндр. Теоретическое описание принципа действия четырехтактного двигателя внутреннего сгорания сделал еще в 1861 г. французский инженер Эжен-Альфонс Бо де Роша. Во многих бензиновых двигателях до сегодняшнего дня применяется четырехтактный цикл. Производство моторов Отто началось в 1878 г.
В 1883 г. Готлиб Даймлер создал первый калильный двигатель. Зажигание бензина осуществлялось от специальной раскалённой трубочки.
В 1892 г. Рудольф Кристиан Карл Дизель запатентовал двигатель, работающий по новому принципу. Топливная смесь в нем загоралась от сжатия в цилиндре. В 1897 г. сделан первый работоспособный образец этого двигателя. Первоначально топливом в этих двигателях использовали растительные масла или лёгкие продукты переработки нефти. Дизельные двигатели нашли применения в промышленности и на транспорте.
Первые образцы испарительных карбюраторов работали плохо. Ускорилось производство двигателей только после изобретения карбюратора нового типа. Его создание принадлежит инженерам из Венгрии Донату Банки и Яношу Чонка, получившим в 1893 г. патент на распыливающий карбюратор с жиклёром. Принцип его работы используется в карбюраторах современных моторов. Конструкторы предложили испарение бензина заменить распылением. Благодаря чему топливо равномерно распределяется и испаряется уже камере сгорания. Через специальный дозирующий жиклер топливо всасывалось и распылялось. В карбюраторе имелось устройство, обеспечивающее постоянный уровень топлива, в нем поддерживался стабильный напор и состав горючей смеси, подачей воздуха регулировалось количество топлива, подаваемое в цилиндр. В 1898 г. Донат Банки разработал двигатель с высокой степенью сжатия и карбюратором с двумя диффузорами. В нем использован новый метод эмульсионного смесеобразования распылением, используемый и в наши дни.
С 19 века двигатели внутреннего сгорания стали неотъемлемой частью любого производства, применяются на транспорте, в быту. Работы по созданию двигателя параллельно велись в Европе, США, России. В одной краткой статье невозможно осветить всю историю. Здесь описаны только наиболее известные открытия в этой области.

Краткая история развития ДВС

ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ

Содержание дисциплины

Введение. Двигатели внутреннего сгорания

Роль и применение ДВС в строительстве

Двигателем внутреннего сгорания (ДВС) называют поршневой тепловой двигатель, в котором процессы сгорания топлива, выделение теплоты и превращение ее в механическую работу происходят непосредственно в цилиндре двигателя.

Рис 1. Общий вид дизельного ДВС

Двигатели внутреннего сгорания, особенно дизельные, нашли самое широкое применение в качестве силового оборудования на разнообразных строительных и дорожных машинах, требующих независимости от внешних источников энергии. Это, в первую очередь, транспортные (автомобили общего и специального назначения, седельные тягачи, тракторы), погрузочно-разгрузочные машины ( вилочные и ковшовые погрузчики, многоковшовые погрузчики), стреловые самоходные краны, машины для земляных работ и т.д. На строительных и дорожных машинах применяются двигатели мощностью от 2 до 900 кВт.

Особенностью их эксплуатации является то, что эти машины длительное время эксплуатируются на режимах близких к номинальным, при значитель-

ном и непрерывном изменении внешней нагрузки, повышенной запыленнос-ти воздуха, в существенно различных климатических условиях и нередко без гаражного хранения.

Рис 2. Габаритные размеры различных типов двигателей: а – мотоцикла;

б – легкового автомобиля; в – грузового автомобиля средней грузоподъем-ности; г – тепловоза; д – судового дизеля; е – авиационного ТРД.

Краткая история развития ДВС

Первый двигатель внутреннего сгорания (ДВС) был изобретен французским инженером Ленуаром в 1860 г. Этот двигатель во многом повторял паровую машину, работал на светильном газе по двухтактному циклу без сжатия. Мощность такого двигателя составляла примерно 8 л.с., КПД – около 5%. Этот двигатель Ленуара был очень громоздким и поэтому не нашел дальнейшего применения.

Через 7 лет немецкий инженер Н. Отто ( 1867 г.) создал 4-х-тактный двигатель с воспламенением от сжатия. Этот двигатель имел мощность 2 л.с., с числом оборотов 150 об/мин. Двигатель мощностью 10 л.с. имел КПД 17% , массу 4600 кг нашел широкое применение. Всего таких двигателей было выпущено более 6 тыс.1880 г. мощность двигателя была доведена до 100 л.с.

В 1885 г. в России капитан Балтийского флота И.С.Костович создал двигатель для воздухоплавания мощностью 80 л.с. с массой 240 кг. Тогда же в Германии Г.Даймлер и независимо от него К.Бенц создали двигатель небольшой мощность для самодвижущихся экипажей – автомобилей. С этого года началась эра автомобилей.

Рис 3. Двигатель Ленуара: 1 – золотник; 2 – полость охлаждения цилин-дра: 3 – свеча зажигания: 4 – поршень: 5 – шток поршня: 6 – шатун: 7 – контактные пластины зажигания: 8 – тяга золотника: 9 – кривошипный вал с маховиками: 10 – эксцентрик тяги золотника.

В конце 19 в. немецким инженером Дизелем был создан и запатентован двигатель, который впоследствии стали называть по имени автора двигателем Дизеля. Топливо в двигателе Дизеля подавалось в цилиндр сжатым воздухом от компрессора и воспламенялось от сжатия. КПД такого двигателя составляло примерно 30%.

Интересно, что за несколько лет до Дизеля русский инженер Тринклер разработал двигатель, работающий на сырой нефти по смешанному циклу – по которому работают все современные дизельные двигатели, однако он не был запатентован, а имя Тринклера мало кто теперь знает.

studopedia.org — Студопедия.Орг — 2014-2019 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.001 с) .

Toyota Carina ТурбоТрактор › Бортжурнал › История создания дизельного двигателя.

Спасибо Андрею за любопытную статью!

История дизельного двигателя началась с истории его изобретателя.

Теодор Дизель, немецкий иммигрант, владел в Париже небольшой мастерской. Но в 1870 году вместе с женой и 12-летним сыном Рудольфом уехал из занятой немецкими войсками столицы Франции в Лондон: через полвека искатели сенсаций сочтут это весьма многозначительным фактом. В 1871 году Дизели поселились в немецком городе Аугсбурге, а еще через девять лет Рудольф с отличием окончил Высшую политехническую школу в Мюнхене, получил степень доктора и на полгода отправился практиковаться на машиностроительную фабрику братьев Зульцер в Швейцарию.

А вскоре мюнхенский профессор Карл фон Линде, очарованный прилежным и схватывающим все на лету молодым человеком, предложил ему место директора филиала своей фирмы в Париже. Именно профессор, изобретатель «холодильника Линде», заинтересовал Дизеля проблемами тепловых двигателей — паровых и только-только появившихся благодаря изобретениям еще одного немца, Николауса Августа Отто, моторов внутреннего сгорания.

За десять лет Дизель создал сотни чертежей и расчетов двигателя абсорбционного типа, работавшего на аммиаке (как в домашних холодильниках недавнего прошлого). Фантазия молодого инженера не знала границ — от миниатюрных моторчиков для швейных машин и прялок до гигантских стационарных агрегатов, использующих к тому же солнечную энергию! И все же цель ускользала — Дизелю никак не удавалось создать, хотя бы на бумаге, эффективный двигатель, чей КПД оказался бы выше 10-12 процентов и превзошел паровую машину.

Свет в конце тоннеля забрезжил в 1890 году. Рудольф оставил фон Линде, переехал в Берлин и… заменил аммиак сильно нагретым сжатым воздухом. «Не могу сказать, — писал позже изобретатель, — когда именно возникла у меня эта мысль. В неустанной погоне за целью, в итоге бесконечных расчетов родилась наконец идея, наполнившая меня огромной радостью, — нужно вместо аммиака взять сжатый горячий воздух, впрыснуть в него распыленное топливо и одновременно со сгоранием расширить его так, чтобы возможно больше тепла использовать для полезной работы».

28 февраля 1892 года Дизель подал заявку на изобретение «нового рационального теплового двигателя», а 23 февраля следующего, 1893 года получил немецкий патент № 67207 на «Рабочий процесс и способ конструирования двигателя внутреннего сгорания для машин».

«Моя идея, — писал он семье в Мюнхен, — настолько опережает все, что создано в данной области до сих пор, что можно смело сказать — я первый в этом новом и наиважнейшем разделе техники на нашем маленьком земном шарике! Я иду впереди лучших умов человечества по обе стороны океана!»

Все изложенные в этих патентах и брошюре предложения Рудольфа Дизеля сводились в основном к тому, чтобы при работе двигателя температура в рабочем цилиндре, необходимая для сжигания топлива (жидкого, газообразного или пылевидного), создавалась не в процессе горения топлива, а еще раньше — в результате адиабатного (без теплообмена с окружающей средой) сжатия в цилиндре до высокого давления заряда чистого воздуха (а не смеси его с топливом, как в двигателе Н. Отто).

Сжатие именно чистого воздуха, а не горючей смеси давало возможность предотвратить преждевременные вспышки наиболее легких фракций топлива, что обычно происходило при повышении степени сжатия в уже существовавших тогда типах двигателей и мешало дальнейшему повышению их КПД. Причем наивысшая температура должна была по замыслу Дизеля создаваться также в этом процессе адиабатного сжатия заряда чистого воздуха, а не при сгорании топлива.

Топливо же в этот воздух, разогретый до температуры, значительно превышающей температуру самовоспламенения горючего вещества, находящегося в твердом, жидком или газообразном состоянии, должно было подаваться постепенно, малыми дозами с такой закономерностью, чтобы процесс сгорания и расширения газов во время горения почти не отличался от изотермического.

Увы, первый экспериментальный двигатель — махина весом в 4,5 тонны оснащена была трехметровым маховиком — взорвался, чудом не убив никого из рабочих и инженеров аугсбургской фабрики. Но уже через пять месяцев, в январе 1895 года, двигатель Дизеля работал целую минуту и при 88 оборотах развил 13,2 л. с.
Однако из-за сильного перегрева мотора прогорал поршень и ломались клапанные пружины. Тогда Дизель решил, что виноват во всем жидкий бензин, и стал использовать в качестве топлива его пары. Цилиндр снабдили водяной рубашкой, а в головку вмонтировали свечу зажигания, отказавшись от краеугольного камня открытия Дизеля — принципа «самовоспламенения от сжатия».

Для второго образца в качестве топлива выбрали керосин, это дало результат – во время испытаний в 1894 году он работал без нагрузки. Опираясь на данные, полученные во время опытов, ученый создает третий образец, в котором учтены ошибки первых двух. Этот вариант был сырым макетом современного дизельного двигателя, в нем использовался сжатый воздух для подачи топлива в цилиндры и распыления. Третья модель во время испытаний 1 мая 1895 года проработала 30 минут, а впоследствии были проведены тесты с различными нагрузками.

Полгода продолжались испытания. И не дали ничего, кроме убеждения, что исследования зашли в тупик.

Консорциуму ошибка Дизеля обошлась в 30 тысяч марок, но Рудольф сумел убедить представителей консорциума в близком успехе. И в конце 1895 года мотор «с воспламенением от сжатия системы Дизеля» работал без перерыва 17 суток. А еще через два года новый двигатель можно было без опаски показывать широкой публике. Агрегат высотой в три метра развивал 172 об/мин и при диаметре единственного цилиндра 250 мм и ходе поршня 400 мм «выдавал» от 17,8 до 19,8 л. с., расходуя 258 г нефти на 1 л. с. в час. При этом термический КПД составлял 26,2 процента — вдвое выше, чем у паровой машины. Заводы очень быстро начали разбирать лицензии на производство таких двигателей.

Сбылись мечты сына скромного парижского ремесленника. Он — на вершине мира! Он крутит этот «маленький земной шарик», как захочет! И деньги не главное — Рудольф легко тратит 900 тысяч марок на строительство роскошного особняка, одно содержание которого обойдется ему в 90 тысяч в год. Но самое поразительное — еще ни один мотор «системы Дизеля» к тому времени даже не был продан!
Первые выпущенные двигатели оказались недееспособными из-за заводских просчетов. Изготовитель не задумались, что создание двигателя требовало высокой точности в изготовлении деталей и использовании жаропрочных материалов. Это было слишком дорого для заводов, поэтому вскоре в адрес Дизеля понеслась жесткая критика. Его обвиняли в надувательстве, потому что предприятия хотели наладить массовое производство агрегатов, но из-за больших затрат они могли позволить себе лишь мелкосерийные партии. К их возмущениям присоединяются владельцы угольных шахт и прочие завистники. Од такой критики фабрика в Аугсбурге, что принадлежавшая Дизелю, стала банкротом. А Рудольф отправился в Париж, где получил за свой мотор… Гран-при Всемирной выставки!

Поразительно везло этому человеку. Подлечив пошатнувшееся здоровье в психиатрической клинике в Нойвиттельсбахе, Дизель решил поправить и банковский счет, вспомнив, наконец, о своем инженерном таланте. И через несколько месяцев военное ведомство кайзеровской Германии с восторгом ухватилось за новый проект Дизеля — многоцилиндровый судовой двигатель для строящегося броненосца «Принцрегент Луитпольд».
Смерть Рудольфа Дизеля так и осталась загадкой. Это случилось 29 сентября 1913 года на лайнере «Дрезден». Корабль выехал из гавани Антверпена, это был первый корабль с дизельным двигателем, после ужина в 23 часа ученый отправился спать в свою каюту. На следующий день утром в ней никого не было, Дизель исчез с судна. Его тело было найдено через 10 дней. Его сын прибыл в Бельгию на опознание вещей, он подтвердил, что они принадлежали Рудольфу. Есть множество предположений о причине гибели ученого: одни говорили, что это самоубийство на фоне банкротства ( так как в наследство семье осталось всего 20 тыс. марок), другие заявляли, что это несчастный случай, третьи были уверены в том, что его убили немецкие солдаты, чтобы не допустить утечки секретной информации.

Производство и продажу дизельных двигателей купил Альфред Нобель, который наладил эту работу в России. В 1898 году Эммануил Нобель сделал производство дизельных моторов на заводе в Петербурге. В этом же году был создан первый в мире двигатель с внутренним смесеобразованием. И уже через год заработал первый дизельный двигатель. Всего в 1899 году их было выпущено 7 штук мощностью 30 и 40 л.
В начале XX века инженер Роберт Бош улучшил встроенный топливный насос и создал его многосекционным. Дизель стал очень популярен как силовое устройство для вспомогательного и общественного транспорта, но все же двигатели с электрическим зажиганием для пассажирских и грузовых машин покупались лучше. А дальше известность дизеля начинает возрастать как из-за экономичности и долговечности, так и из-за уменьшенной токсичности выбросов в атмосферу.
Новейшая история дизельного двигателя возникла в 1997 г. Более 10 лет назад компания Bosch впервые представила на рынке свою систему Common Rail для легковых машин. Alfa Romeo 156 JTD и Mercedes-Benz 220 CDI были первыми машинами, которые оборудовали данной системой.

pk-motors.ru

Двигатель внутреннего сгорания | Физика

Двигатель внутреннего сгорания был изобретен в 1860 г. французским механиком Э. Ленуаром. Свое название он получил из-за того, что топливо в нем сжигалось не снаружи, а внутри цилиндра двигателя. Аппарат Ленуара имел несовершенную конструкцию, низкий КПД (около 3 %) и через несколько лет был вытеснен более совершенными двигателями.

Наибольшее распространение среди них получил четырехтактный двигатель внутреннего сгорания, сконструированный в 1878 г. немецким изобретателем Н. Отто. Каждый рабочий цикл этого двигателя включал в себя четыре такта: впуск горючей смеси, ее сжатие, рабочий ход и выпуск продуктов сгорания. Отсюда и название двигателя — четырехтактный.

Двигатели Ленуара и Отто работали на смеси воздуха со светильным газом. Бензиновый двигатель внутреннего сгорания был создан в 1885 г. немецким изобретателем Г. Даймлером. Примерно в это же время бензиновый двигатель был разработан и О. С. Костовичем в России. Горючая смесь (смесь бензина с воздухом) приготовлялась в этом двигателе с помощью специального устройства, называемого карбюратором.


Современный четырехцилиндровый двигатель внутреннего сгорания изображен на рисунке 88. Поршни, находящиеся внутри цилиндров двигателя, соединены с коленчатым валом 1. На этом валу укреплен тяжелый маховик 2. В верхней части каждого цилиндра имеется два клапана: один из них называется впускным, другой — выпускным. Через первый из них горючая смесь попадает в цилиндр, а через второй продукты сгорания топлива уходят наружу.

Принцип действия одноцилиндрового двигателя внутреннего сгорания иллюстрирует рисунок 89.

1-й    такт — впуск. Открывается клапан 1. Клапан 2 закрыт. Движущийся вниз поршень 3 засасывает в цилиндр горючую смесь.
2-й    такт — сжатие. Оба клапана закрыты. Движущийся вверх поршень сжимает горючую смесь. Смесь при сжатии нагревается.
3-й    такт — рабочий ход. Оба клапана закрыты. Когда поршень оказывается в верхнем положении, смесь поджигается электрической искрой свечи 4. В результате сгорания смеси образуются раскаленные газы, давление которых составляет 3—6 МПа, а температура достигает 1600—2200 °С. Сила давления этих газов толкает поршень вниз. Движение поршня передается коленчатому валу с маховиком. Получив сильный толчок, маховик будет вращаться дальше по инерции, обеспечивая тем самым перемещение поршня и при последующих тактах.
4-й    такт — выпуск. Открывается клапан 2. Клапан 1 закрыт. Поршень движется вверх. Продукты сгорания топлива уходят из цилиндра и через глушитель (на рисунке не показан) выбрасываются в атмосферу.

Мы видим, что в одноцилиндровом двигателе полезная работа совершается лишь во время третьего такта. В четырехцилиндровом двигателе (см. рис. 88) поршни укреплены таким образом, что во время каждого из четырех тактов один из них находится в стадии рабочего хода. Благодаря этому коленчатый вал получает энергию в 4 раза чаще. При этом увеличивается мощность двигателя и в лучшей степени обеспечивается равномерность вращения вала.

Частота вращения вала у большинства двигателей внутреннего сгорания лежит в пределах от 3000 до 7000 оборотов в минуту, а в некоторых случаях достигает 15 000 оборотов в минуту и более.

В 1897 г. немецкий инженер Р. Дизель сконструировал двигатель внутреннего сгорания, в котором сжималась не горючая смесь, а воздух. В процессе этого сжатия температура воздуха поднималась настолько, что при попадании в него топлива оно самовозгоралось. Специального устройства для воспламенения топлива в этом двигателе уже не требовалось; не нужен был и карбюратор. Новые двигатели стали называть дизелями.

Двигатели Дизеля являются наиболее экономичными тепловыми двигателями: они работают на дешевых видах топлива и имеют КПД 31—44 % (в то время как КПД карбюраторных двигателей составляет обычно 25-30 %). В настоящее время они применяются на тракторах, тепловозах, теплоходах, танках, грузовиках, передвижных электростанциях.

Судьба самого изобретателя нового двигателя оказалась трагической. 29 сентября 1913 г. он сел на пароход, отправлявшийся в Лондон. Наутро его в каюте не нашли. Талантливый инженер бесследно исчез. Считается, что он покончил с собой, бросившись ночью в воды Ла-Манша.

Изобретение двигателя внутреннего сгорания сыграло огромную роль в автомобилестроении. Первый автомобиль с бензиновым двигателем внутреннего сгорания был создан в 1886 г. Г. Даймлером. Одновременно с этим Даймлер запатентовал установку своего двигателя на моторной лодке и мотоцикле. В том же году, но чуть позже появился трехколесный автомобиль К- Бенца. Громоздкие и трудноуправляемые паровые автомобили стали вытесняться новыми машинами. Последующие годы явились началом промышленного производства автомобилей.
В 1892 г. свой первый автомобиль построил Г. Форд (США). Через 11 лет его автомобили (рис. 90) были запущены в массовое производство.

В 1908 г. автомобили начали производить на Русско-Балтийском заводе в Риге. Один из первых русских автомобилей «Руссо-Балт» показан на рисунке 91.

Важную роль в развитии и распространении нового вида транспорта сыграли автомобильные гонки, которые стали устраиваться с 1894 г. В первой из них средняя скорость автомобилей составляла лишь 24 км/ч. Однако уже через пять лет она достигла 70 км/ч, а еще через пять лет— 100 км/ч.

После 1900 г. началось производство специальных гоночных автомобилей. С каждым годом их скорость возрастала. В 60-х гг. скорость автомобилей с поршневым двигателем превысила 600 км/ч, а после установки на автомобиле газотурбинного двигателя она перевалила за 900 км/ч. Наконец, в 1997 г. Э. Грин (Великобритания) на своем ракетном автомобиле «Траст SSC» достиг скорости 1227,985 км/ч, что превысило скорость звука в воздухе!

1. Опишите принцип действия четырехтактного двигателя внутреннего сгорания. Из каких тактов состоит каждый его рабочий цикл? 2. Какую роль в двигателе играет маховик? 3. Чем отличается дизельный двигатель внутреннего сгорания от карбюраторного? 4. Кто создал первые автомобили с двигателем внутреннего сгорания?

phscs.ru


Смотрите также